Analysis of Variance�or�‘F’
Dr. Anshul Singh Thapa
An Introduction
Steps in calculation of ‘F’
Step 1 – Correction factor
Step 2 – Sum of Square of Total (SST)
Step 3 – Sum of Square among the Groups (SSA)
Step 4 – Sum of Square within the Group (SSW)
Step 5 – Mean Sum of Squares among the groups (MSSA )
Step 6 – Mean Sum of Squares within the groups (MSSW)
Step 7 – F Ratio i.e., F = MSSA / MSSW
Step 8 – Summary of ANOVA
One way ANOVA
Sr. No. | Group - A | Group – B | Group – C |
1 | 8 | 10 | 15 |
2 | 10 | 8 | 11 |
3 | 7 | 7 | 9 |
4 | 6 | 8 | 8 |
5 | 5 | 9 | 14 |
6 | 4 | 6 | 13 |
7 | 9 | 7 | 12 |
8 | 6 | 9 | 16 |
9 | 7 | 11 | 12 |
10 | 8 | 8 | 10 |
k = 3 (Number of groups)
n = 10 (Number of subjects in each group)
N = 30 [n x k or n1+n2+n3 (Total number of scores in an experiment)]
One Way ANOVA
Group - A | Group – B | Group – C |
8 | 10 | 15 |
10 | 8 | 11 |
7 | 7 | 9 |
6 | 8 | 8 |
5 | 9 | 14 |
4 | 6 | 13 |
9 | 7 | 12 |
6 | 9 | 16 |
7 | 11 | 12 |
8 | 8 | 10 |
One Way ANOVA
Group - A | Group – B | Group – C |
8 | 10 | 15 |
10 | 8 | 11 |
7 | 7 | 9 |
6 | 8 | 8 |
5 | 9 | 14 |
4 | 6 | 13 |
9 | 7 | 12 |
6 | 9 | 16 |
7 | 11 | 12 |
8 | 8 | 10 |
Sum: 70 | Sum: 83 | Sum: 120 |
Step 1 = Calculation of Correction Factor
Correction Factor = G2/N
Group - A | Group – B | Group – C |
8 | 10 | 15 |
10 | 8 | 11 |
7 | 7 | 9 |
6 | 8 | 8 |
5 | 9 | 14 |
4 | 6 | 13 |
9 | 7 | 12 |
6 | 9 | 16 |
7 | 11 | 12 |
8 | 8 | 10 |
Group - A | Group – B | Group – C |
8 | 10 | 15 |
10 | 8 | 11 |
7 | 7 | 9 |
6 | 8 | 8 |
5 | 9 | 14 |
4 | 6 | 13 |
9 | 7 | 12 |
6 | 9 | 16 |
7 | 11 | 12 |
8 | 8 | 10 |
Sum: 70 | Sum: 83 | Sum: 120 |
Group - A | Group – B | Group – C |
8 | 10 | 15 |
10 | 8 | 11 |
7 | 7 | 9 |
6 | 8 | 8 |
5 | 9 | 14 |
4 | 6 | 13 |
9 | 7 | 12 |
6 | 9 | 16 |
7 | 11 | 12 |
8 | 8 | 10 |
Sum: 70 | Sum: 83 | Sum: 120 |
G (A+B+C) = 273 | ||
Group - A | Group – B | Group – C |
8 | 10 | 15 |
10 | 8 | 11 |
7 | 7 | 9 |
6 | 8 | 8 |
5 | 9 | 14 |
4 | 6 | 13 |
9 | 7 | 12 |
6 | 9 | 16 |
7 | 11 | 12 |
8 | 8 | 10 |
Sum: 70 | Sum: 83 | Sum: 120 |
G (A+B+C) = 273 | ||
Calculation of Correction Factor (CF) = G2 /N (8 + 10 + ...............12 + 10)2 = 2732 / 30 = 2484.3 | ||
Step 2 = Calculation of Sum of Square of Total
Sum of Square of Total = RSS – CF
Group - A | | Group – B | | Group – C | |
8 | | 10 | | 15 | |
10 | | 8 | | 11 | |
7 | | 7 | | 9 | |
6 | | 8 | | 8 | |
5 | | 9 | | 14 | |
4 | | 6 | | 13 | |
9 | | 7 | | 12 | |
6 | | 9 | | 16 | |
7 | | 11 | | 12 | |
8 | | 8 | | 10 | |
Group - A | A2 | Group – B | | Group – C | |
8 | 64 | 10 | | 15 | |
10 | 100 | 8 | | 11 | |
7 | 49 | 7 | | 9 | |
6 | 36 | 8 | | 8 | |
5 | 25 | 9 | | 14 | |
4 | 16 | 6 | | 13 | |
9 | 81 | 7 | | 12 | |
6 | 36 | 9 | | 16 | |
7 | 49 | 11 | | 12 | |
8 | 64 | 8 | | 10 | |
Group - A | A2 | Group – B | B2 | Group – C | |
8 | 64 | 10 | 100 | 15 | |
10 | 100 | 8 | 64 | 11 | |
7 | 49 | 7 | 49 | 9 | |
6 | 36 | 8 | 64 | 8 | |
5 | 25 | 9 | 81 | 14 | |
4 | 16 | 6 | 36 | 13 | |
9 | 81 | 7 | 49 | 12 | |
6 | 36 | 9 | 81 | 16 | |
7 | 49 | 11 | 121 | 12 | |
8 | 64 | 8 | 64 | 10 | |
Group - A | A2 | Group – B | B2 | Group – C | C2 |
8 | 64 | 10 | 100 | 15 | 225 |
10 | 100 | 8 | 64 | 11 | 121 |
7 | 49 | 7 | 49 | 9 | 81 |
6 | 36 | 8 | 64 | 8 | 64 |
5 | 25 | 9 | 81 | 14 | 196 |
4 | 16 | 6 | 36 | 13 | 169 |
9 | 81 | 7 | 49 | 12 | 144 |
6 | 36 | 9 | 81 | 16 | 256 |
7 | 49 | 11 | 121 | 12 | 144 |
8 | 64 | 8 | 64 | 10 | 100 |
Group - A | A2 | Group – B | B2 | Group – C | C2 |
8 | 64 | 10 | 100 | 15 | 225 |
10 | 100 | 8 | 64 | 11 | 121 |
7 | 49 | 7 | 49 | 9 | 81 |
6 | 36 | 8 | 64 | 8 | 64 |
5 | 25 | 9 | 81 | 14 | 196 |
4 | 16 | 6 | 36 | 13 | 169 |
9 | 81 | 7 | 49 | 12 | 144 |
6 | 36 | 9 | 81 | 16 | 256 |
7 | 49 | 11 | 121 | 12 | 144 |
8 | 64 | 8 | 64 | 10 | 100 |
| Sum: 520 | | Sum: 709 | | Sum: 1500 |
Group - A | A2 | Group – B | B2 | Group – C | C2 |
8 | 64 | 10 | 100 | 15 | 225 |
10 | 100 | 8 | 64 | 11 | 121 |
7 | 49 | 7 | 49 | 9 | 81 |
6 | 36 | 8 | 64 | 8 | 64 |
5 | 25 | 9 | 81 | 14 | 196 |
4 | 16 | 6 | 36 | 13 | 169 |
9 | 81 | 7 | 49 | 12 | 144 |
6 | 36 | 9 | 81 | 16 | 256 |
7 | 49 | 11 | 121 | 12 | 144 |
8 | 64 | 8 | 64 | 10 | 100 |
| Sum: 520 | | Sum: 709 | | Sum: 1500 |
Raw Sum of Square RSS (A2 + B2 + C2) = 2729 | |||||
Group - A | A2 | Group – B | B2 | Group – C | C2 |
8 | 64 | 10 | 100 | 15 | 225 |
10 | 100 | 8 | 64 | 11 | 121 |
7 | 49 | 7 | 49 | 9 | 81 |
6 | 36 | 8 | 64 | 8 | 64 |
5 | 25 | 9 | 81 | 14 | 196 |
4 | 16 | 6 | 36 | 13 | 169 |
9 | 81 | 7 | 49 | 12 | 144 |
6 | 36 | 9 | 81 | 16 | 256 |
7 | 49 | 11 | 121 | 12 | 144 |
8 | 64 | 8 | 64 | 10 | 100 |
| Sum: 520 | | Sum: 709 | | Sum: 1500 |
Raw Sum of Square RSS (A2 + B2 + C2) = 2729 | |||||
Calculation of Total Sum of Square (SST) = RSS – CF SST = 2729 – 2484.3 = 244.7 | |||||
Step 3 =
Calculation of Sum of Square among the Groups
Sum of Square among the Groups =
ΣA2 / n + ΣB2 / n + ΣC2 / n – CF
Group - A | Group – B | Group – C |
8 | 10 | 15 |
10 | 8 | 11 |
7 | 7 | 9 |
6 | 8 | 8 |
5 | 9 | 14 |
4 | 6 | 13 |
9 | 7 | 12 |
6 | 9 | 16 |
7 | 11 | 12 |
8 | 8 | 10 |
Group - A | Group – B | Group – C |
8 | 10 | 15 |
10 | 8 | 11 |
7 | 7 | 9 |
6 | 8 | 8 |
5 | 9 | 14 |
4 | 6 | 13 |
9 | 7 | 12 |
6 | 9 | 16 |
7 | 11 | 12 |
8 | 8 | 10 |
ΣA: 70 | ΣB: 83 | ΣC: 120 |
Group - A | Group – B | Group – C |
8 | 10 | 15 |
10 | 8 | 11 |
7 | 7 | 9 |
6 | 8 | 8 |
5 | 9 | 14 |
4 | 6 | 13 |
9 | 7 | 12 |
6 | 9 | 16 |
7 | 11 | 12 |
8 | 8 | 10 |
ΣA: 70 | ΣB: 83 | ΣC: 120 |
ΣA2 / n = (70)2/10 = 490 | ΣB2 / n = (83)2/10 = 688.9 | ΣC2 / n = (120)2/10 = 1440 |
Group - A | Group – B | Group – C |
8 | 10 | 15 |
10 | 8 | 11 |
7 | 7 | 9 |
6 | 8 | 8 |
5 | 9 | 14 |
4 | 6 | 13 |
9 | 7 | 12 |
6 | 9 | 16 |
7 | 11 | 12 |
8 | 8 | 10 |
ΣA: 70 | ΣB: 83 | ΣC: 120 |
ΣA2 / n = (70)2/10 = 490 | ΣB2 / n = (83)2/10 = 688.9 | ΣC2 / n = (120)2/10 = 1440 |
490 + 668.9 + 1440 = 2618.9 | ||
Group - A | Group – B | Group – C |
8 | 10 | 15 |
10 | 8 | 11 |
7 | 7 | 9 |
6 | 8 | 8 |
5 | 9 | 14 |
4 | 6 | 13 |
9 | 7 | 12 |
6 | 9 | 16 |
7 | 11 | 12 |
8 | 8 | 10 |
ΣA: 70 | ΣB: 83 | ΣC: 120 |
ΣA2 / n = (70)2/10 = 490 | ΣB2 / n = (83)2/10 = 688.9 | ΣC2 / n = (120)2/10 = 1440 |
490 + 668.9 + 1440 = 2618.9 | ||
SSA = (Summation of Sum of A2 divided by n plus Sum of B2 divided by n…) – CF = SSA = 2618.9 – 2484.3 = 134.6 | ||
Step 4 - Calculation of SSW
Calculation of Sum of Square within the group (SSW)
SSW = SST – SSA
SSW = 244.7 – 134.6 = 110.1
Step 5 - Calculation of MSSA
Mean Sum of Square among the groups (MSSA)
MSSA= SSA/ k – 1
MSSA = 134.6/ 2 = 67.3
Step 6 - Calculation of MSSW
Mean Sum of Square within the group MSSW
MSSW = SSW/ N – k
MSSW = 110.1/ 27 = 4.08
Step 7 - Calculation of F ratio
F Ratio = MSSA/ MSSW = 67.3/ 4.08 = 16.50
Step 8 – ANOVA Summary
Source of Variance | df | Sum of Square | Mean Sum of Square | F - value |
| | | | |
| | | | |
| | | |
Step 8 – ANOVA Summary
Source of Variance | df | Sum of Square | Mean Sum of Square | F - value |
Between the groups | | | | |
Within the groups | | | | |
Total | | | |
Step 8 – ANOVA Summary
Source of Variance | df | Sum of Square | Mean Sum of Square | F - value |
Between the groups | 2 | | | |
Within the groups | 27 | | | |
Total | 29 | | |
Step 8 – ANOVA Summary
Source of Variance | df | Sum of Square | Mean Sum of Square | F - value |
Between the groups | 2 | 134.6 | | |
Within the groups | 27 | 110.1 | | |
Total | 29 | 244.7 | |
Step 8 – ANOVA Summary
Source of Variance | df | Sum of Square | Mean Sum of Square | F - value |
Between the groups | 2 | 134.6 | 67.3 | |
Within the groups | 27 | 110.1 | 4.08 | |
Total | 29 | 244.7 | |
Step 8 – ANOVA Summary
Source of Variance | df | Sum of Square | Mean Sum of Square | F - value |
Between the groups | 2 | 134.6 | 67.3 | 16.50* |
Within the groups | 27 | 110.1 | 4.08 | |
Total | 29 | 244.7 | |
Step 8 – ANOVA Summary
*Significant at 0.05 level of Significance
Source of Variance | df | Sum of Square | Mean Sum of Square | F - value |
Between the groups | 2 | 134.6 | 67.3 | 16.50* |
Within the groups | 27 | 110.1 | 4.08 | |
Total | 29 | 244.7 | |
Table value F.05 (2,27) = 3.35
Degree of Freedom:
Between the Group = k – 1
Within the group = N – k
k = 3 (Number of groups)
n = 10 (Number of subjects in each group)
N = 30 [n x k or n1+n2+n3 (Total number of scores in an experiment)]
Calculate ANOVA
Sr. No. | Arts Group | Science Group | M.P.Ed |
1 | 15 | 12 | 12 |
2 | 14 | 14 | 15 |
3 | 11 | 10 | 14 |
4 | 12 | 13 | 10 |
5 | 10 | 11 | 10 |
One way ANOVA
Group 1 | Group 2 | Group 3 | Group 4 |
15 | 20 | 10 | 30 |
10 | 13 | 24 | 22 |
12 | 9 | 29 | 26 |
8 | 22 | 12 | 20 |
21 | 24 | 27 | 29 |
7 | 25 | 21 | 28 |
13 | 18 | 25 | 25 |
3 | 12 | 14 | 15 |