
3. Algorithms
2023-11-20

Section materials: jrsacher.github.io/cs50/

https://jrsacher.github.io/cs50/

Upcoming (U.S.) holidays

● Thursday, November 23 (section) – Thanksgiving
● Monday, December 25 (office hours) – Christmas
● Monday, January 1 (section) – New Year's Day

Agenda

● Big O notation
● Searching

○ Linear search
○ Binary search

● Sorting
○ Selection sort
○ Bubble sort
○ Merge Sort

● Recursion
● Data structures

Algorithmic complexity

Big O

● How many steps does your algorithm take for each value passed into it?
○ O ("big O") is the worst-case for your algorithm – this is what we want to consider
○ Ω ("omega") is the best-case – but we usually don't care about that
○ ϴ ("theta") is a special case where O == Ω

● Common running times (low to high)
○ Constant: O(1)
○ Log: O(log n)
○ Linear: O(n)
○ Log-linear: O(n log n)
○ Quadratic: O(n2) (or, more generally, polynomial)
○ Exponential: O(2n)

Visualizing O

Visualizing O

Visualizing O

Search

Linear search

● Algorithm:
○ Iterate through each item in the array

■ If the desired value is found, return true
■ If you reach the end of the array and do not find the value, return false

● Benefits:
○ Simple
○ Works with unsorted data

● Drawbacks:
○ Slow-ish – O(n)

Binary search

● Algorithm:
○ If no values remain, return false
○ Find middle point of array
○ If your value is found, return true
○ Else if your value is less than the current value

■ Search the left half
○ Else if your value is greater than the current value

■ Search the right half
● Benefit:

○ Faster – O(log n)
● Drawback:

○ Array needs to be sorted – additional "upfront" cost

binary_search_0.c

Sorting

13, 5, 3, 10, 8, 4, 1, 14, 2, 6, 9, 12, 7, 15, 11

https://visualgo.net/en/sorting

https://visualgo.net/en/sorting

Sorting types

● Selection sort
○ Find smallest element, move to the front of the unsorted portion

● Bubble sort
○ Compare number and its neighbor. If the first number is bigger, swap them
○ If no swaps, quit

● Merge sort
○ Look at half the array at a time (and half of that… and half of that…)
○ Merge partially sorted arrays to create larger sorted arrays

Recursion

Recursive functions

factorial(1) 1

factorial(2) 2 * 1

factorial(3) 3 * 2 * 1

factorial(4) 4 * 3 * 2 * 1

factorial(5) 5 * 4 * 3 * 2 * 1

Recursion example: Factorial!

factorial(1) 1

factorial(2) 2 * factorial(1)

factorial(3) 3 * 2 * 1

factorial(4) 4 * 3 * 2 * 1

factorial(5) 5 * 4 * 3 * 2 * 1

Recursion example: Factorial!

factorial(1) 1

factorial(2) 2 * factorial(1)

factorial(3) 3 * factorial(2)

factorial(4) 4 * 3 * 2 * 1

factorial(5) 5 * 4 * 3 * 2 * 1

Recursion example: Factorial!

factorial(1) 1

factorial(2) 2 * factorial(1)

factorial(3) 3 * factorial(2)

factorial(4) 4 * factorial(3)

factorial(5) 5 * 4 * 3 * 2 * 1

Recursion example: Factorial!

factorial(1) 1

factorial(2) 2 * factorial(1)

factorial(3) 3 * factorial(2)

factorial(4) 4 * factorial(3)

factorial(5) 5 * factorial(4)

Recursion example: Factorial!

factorial(1) 1

factorial(2) 2 * factorial(1)

factorial(3) 3 * factorial(2)

factorial(4) 4 * factorial(3)

factorial(5) 5 * factorial(4)

factorial(n) n * factorial(n - 1) -- for all n >= 1

Recursion example: Factorial!

Parts of a recursive function

● Base case (otherwise our function would run forever!)
● Recursive case

int fact(int n)
{

// Base case

// Recursive case

}

int fact(int n)
{

if n == 1
return 1;

else
return n * fact(n - 1);

}

factorial.c
binary_search_1.c

Data Structures

Structs

● In C, you have to define your variable type.
● But what if different types make sense grouped together

favorites[] = {“purple”, 13, 3.14}

● Structs get around this by grouping things together

typedef

typedef struct
{

string color;
int number;
float irrational;

} favorites;

favorites josh;
josh.color = “purple”;
josh.number = 13;
josh.irrational = 3.14;

accessing info in structs

typedef struct favorites
{

string color;
int number;
float irrational;

} favorites;

favorites josh;
josh.color = “purple”;
josh.number = 13;
josh.irrational = 3.14;

printf(“%s”, josh.color);

airports.c

Questions?

