
System Security
Exec in Minix
(Lecture 5)

Roberto Guanciale

Exec

● POSIX syscall (different than MINIX kernel syscall)
● execl, execle, execlp, execv, execve, and execvp
● runs an executable file in the context of the existing

process, replacing the previous executable (overlay).
○ PID does not change
○ the machine code, data, heap, and stack of the process are replaced

by those of the new program
○ A file descriptor opened when an exec call is made will remain open

in the new process image

Exec implementation

● lib/libc/gen/execl.c, execle.c, execlp.c, execv.c,
execvp.c

○ User space wrappers

● minix/lib/libc/sys/execve.c
○ Process invokes PM_EXEC (14) syscall of process manager (PM_PROC_NR)
○ Done using ipc_sendrec via the kernel

● Before that, process prepares the initial stack for the
new executable

○ The initial stack is used for argv (program arguments)
○ Notice that this stack is prepared by the user process

http://cinnabar.sosdg.org/~qiyong/qxr/minix3/source

Physical MemoryVirtual Memory

Creation of the new Stack

Stack
Stack

Heap

Heap

New Stack

ls

main (argc, argv) for ls -lrt /tmp

-lrt

/tmp

PATH=/home

LD_LIBRATY_PATH=/usr/lib

argc: 3

argv[0]

argv[1]

argv[2]

env[0]

env[1]

NULL

Libc exec

● minix_stack_params
○ minix/lib/libc/sys/stack_utils.c#L76
○ computes size of the new stack

■ 1 integer for argc +
■ (1 pointer + string) for arg
■ (1 pointer + string) for env
■ 1 pointer for NULL terminated env

● allocates space on the heap for the new stack
○ sbrk

Physical MemoryVirtual Memory

Creation of the new Stack

Stack
Stack

Heap

Heap
New stack

sbrk

● change the location of the program break, which defines
the end of the process's data segment

○ (exec allocates on the heap bypassing malloc)

● minix/lib/libc/sys/sbrk.c
● minix/lib/libc/sys/brk.c
● _syscall(VM_PROC_NR, VM_BRK)
● minix/servers/vm/break.c#L63

○ map_region_extend_upto_v

Physical MemoryVirtual Memory

Creation of the new Stack

Stack
Stack

Heap

Heap
New stack

sbrk

● No need to allocate the new virtual memory in physical
memory

● As soon as the process writes in the new heap region
○ Page fault
○ VM allocates physical memory and map virtual memory
○ Process writes into the heap
○ There can be multiple pages, which requires multiple page faults

● After writing the new stack.... (and possibly several
page faults)

Physical MemoryVirtual Memory

Creation of the new Stack

Stack
Stack

Heap

Heap
New stack

New stack

Libc exec

● minix_stack_fill writes the new stack
○ minix/lib/libc/sys/stack_utils.c#L119

New Stack

ls

main (argc, argv) for ls -lrt /tmp

-lrt

/tmp

PATH=/home

LD_LIBRATY_PATH=/usr/lib

argc: 3

argv[0]

argv[1]

argv[2]

env[0]

env[1]

NULL

Virtual Address?
Physical Address?

Physical MemoryVirtual Memory

Creation of the new Stack

Stack
Stack

Heap

Heap
New stack

New stack

argv[0] string

Physical MemoryVirtual Memory

Creation of the new Stack

Stack

Heap

New HeapNew stack

New stack

argv[0] string

Virtual Memory
After Exec

New Heap

New stack

Libc exec

● minix_stack_fill writes the new stack
○ minix/lib/libc/sys/stack_utils.c#L119

● *vsp = minix_get_user_sp() - stack_size
○ minix/lib/libc/sys/stack_utils.c#L133

● minix_get_user_sp()
○ lib/libc/sys/kernel_utils.c#L40
○ Kernel info initialized when a program starts (exec) by libc,

invoking ipc_minix_kerninfo syscall
○ user_sp is the same for every process, configured by kui_user_sp

● minix_stack_fill uses this information to fix the
pointers in the new stack

New Stack

ls

main (argc, argv) for ls -lrt /tmp

-lrt

/tmp

PATH=/home

LD_LIBRATY_PATH=/usr/lib

argc: 3

argv[0]

argv[1]

argv[2]

env[0]

env[1]

NULL

Address in the
future virtual
memory space

Libc exec

● Finally exec invokes the syscall
○ _syscall(PM_PROC_NR, PM_EXEC)

● It specifies the size and position of the stack (even if
m.m_lc_pm_exec.ps_str should be the same for all
processes)

● Exec protocol (among servers) quite complicated
○ It is designed to avoid deadlocks

PM

● minix/servers/pm/exec.c consists of several steps:
○ do_exec: receives the request from the user process

■ Forwards the request to VFS using the VFS_PM_EXEC message
■ Async

○ do_newexec: handle PM part of exec call after VFS
■ e.g. setuid etc

○ exec_restart: finish a regular exec call

○ do_execrestart: finish the special exec call for RS

VFS

● pm_exec does the actual work
○ minix/servers/vfs/exec.c#L185

● interoperates with file systems (and disk drivers) to
parse and load the elf

● communicates with VM to create the new virtual memory
○ map the executable
○ allocate stack

● replies to PM

VFS

● Get_read_vp
○ reads the header of the executable using map_header
○ invokes req_readwrite to communicate with the file system

■ minix/servers/vfs/exec.c#L754
○ Notice cpf_grant_magic

■ minix/servers/vfs/request.c#L836
■ It enables VFS to grant a real file system to write/read memory

of a process
● In general can be a process that requested a memory read

(user processes cannot use cpf_grant)

VFS

● Elf load done by libexec_load_elf
○ Using callbacks in minix/servers/vfs/exec.c#L338
○ stack_size and stack_high have been identified by pm_exec
○ For every segment

■ If mmap is enabled, informs VM about the vfs_mmap
● minix/servers/vfs/exec.c#L161

■ Otherwise
● Asks VM for junk mmap
● Copies the segment (via the filesystem process)

○ Asks VM to allocate free memory for the stack

VFS

● VFS informs PM that process has been loaded
● PM do_newexec

○ minix/servers/pm/exec.c#L62
○ Sets PM informations in PM table e.g. UID GID

● Stack_prepare_elf
○ Copies stack data into the new stack

● Sends VFS_PM_EXEC_REPLY to PM

PM

● exec_restart
○ Completes exec
○ sys_exec informs the kernel the exec is done (informing about pc and

sp)

● Does not reply to the process
○ Kernel will activate the process later

Kernel

● sys_exec
○ minix/kernel/system/do_exec.c#L20
○ Save command name for debugging, ps(1) output
○ Update process context

■ PC, SP
○ Unmark process as waiting a reply from PM so it is runnable

UML

@startuml
process->kernel: ipc_sendrec(VM,
VM_BRK)
VM->process
process -> kernel: page fault
kernel->VM:PT_FAULT
note right: allocate memory
VM->kernel
kernel->process: retry

process->kernel: ipc_sendrec(PM,
PM_EXEC)
note left: prepare new stack
kernel->PM:PM_EXEC
PM-->VFS:VFS_PM_EXEC
VFS->FS:get_read_vp
note right: read elf header
FS->VFS
note left: pase elf
VFS->VM:vfs_mmap
note left: for text
VM->VFS
VFS->VM:mmap
note left: for stack
VM->VFS
VFS->PM: NEWEXEC
note left: set uid
PM->VFS
note right: copy stack
VFS-->PM: EXEC_REPLY
PM->kernel:SYS_EXEC
note left: set process context
kernel->PM
kernel->process
note left: main
@enduml

Page
fault

Heap

● Stack built by the executing process
● Data and Text built by VFS
● Heap?
● lib/libc/stdlib/malloc.c

○ malloc_init initialize the structures needed for malloc
○ malloc uses sbrk to increase size of data memory, whose top contains

the heap

Adding a new
service to minix

minix/servers/myserver/ simple service with ping

● Makekfile
○ CPPFLAGS.myserver.c copied from DS service (black magic)
○ .include <minix.service.mk> it’s a service

● proto.h (prototypes), inc.h and myserve.h (dependencies)
● main.c

○ Uses sef, sef_receive to receive messages synchronously, ipc_send to
send reply, dispatches MYSERVER_SYS1

● myserver.c
○ implementation of sef and syscall

Additional files to compile and deploy the service

● minix/include/minix/com.h
○ Define MYSERVER endpoint (fixed ID)
○ Defines MYSERVER_SYS1

● minix/servers/Makefile
○ includes compilation of myserver

● distrib/sets/lists/minix-base/mi
○ includes the binary

● etc/system.conf
○ enables myservice to interact with other services

● minix/include/minix/myserver.h
○ Wrapper to invoke the syscall

● minix/lib/libsys/myserver.c
○ Implementation of the wrapper

● minix/include/minix/Makefile
○ Adds the wrapper prototype to compile the kernel

● minix/lib/libsys/Makefile
○ Adds the wrapper to libsys

● distrib/sets/lists/minix-comp/mi
○ Adds the wrapper prototype to the file list

Wrapper

Service strart-up

● Service must be started when minix boot
○ with a fixed endpoint number

● releasetools/Makefile
○ Adds myservice to the initial image

● minix/kernel/table.c
○ Informs kernel about the new service

● minix/servers/rs/table.c
○ Informs RS about the new service

● distrib/sets/lists/minix-kernel/mi
○ Add the new service to the boot files

Invocation of myservice

● Services cannot be directly invoked by user-processes
● minix/drivers/mydriver/mydriver.c

○ Uses the syscall wrapper

● minix/drivers/mydriver/mydriver.conf
○ IPC access to all services

Questions

