
Lecture 10: Hash Collision
Resolutions Continued

CSE 373: Data Structures and
Algorithms

1

Please log onto PollEv.com/champk to answer the daily lecture participation question

http://pollev.com/champk

Practice

 Consider a StringDictionary using separate chaining with an internal capacity of 10. Assume
our buckets are implemented using a LinkedList. Use the following hash function:

 public int hashCode(String input) {
 return input.length() % arr.length;
 }

 Now, insert the following key-value pairs. What does the dictionary internally look like?

 (“a”, 1) (“ab”, 2) (“c”, 3) (“abc”, 4) (“abcd”, 5) (“abcdabcd”, 6) (“five”, 7) (“hello world”, 8)

CSE 373 SU 19 - ROBBIE WEBER 2

0 1 2 3 4 5 6 7 8 9

(“a”, 1) (“abcd”, 5)

(“c”, 3)

(“five”, 7)

(“abc”, 4)(“ab”, 2)

(“hello world”, 8)

(“abcdabcd”, 6)

Announcements

 Exercise 2 due this Friday (April 22nd) at 11:59 pm

 Project 2 due next wednesday April 27th

Best practices for an nice distribution of keys recap

1. Resize when lambda (number of elements / number of buckets) increases up to 1
a. Fewer collisions when there are more buckets to spread data across

2. When you resize, you can choose a the table length that will help reduce collisions if you
multiply the array length by 2 and then choose the nearest prime number
a. When mod’ing by table size, if table size is a prime number less likely to cause collisions because

dividing by prime number has fewer common denominator
b. Prime Numbers: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61
c. Table start at 11 -> 23 -> 47 -> 97

3. Design the hashCode of your keys to be somewhat complex and lead to a distribution of
different output numbers
a. Include enough identifying features of what you are hashing to get unique hash codes
b. Balance the runtime of computation of hash code with the runtime of dealing with collisions

CSE 373 22 SP – CHAMPION

Resizing Don’t forget to re-distribute your keys! As seen on

Project 20

1

2

3

4

5

6

7

8

9

(7,blue)

(4,orange)

0

1

2

3

4

5

6

7

8

9

(1,red)

(22,tan)(22,tan) (7,blue) (77,aqua)

(4,orange)

(1,red) (6,pink)

(8,lilac) (53,puce)

(6,pink)

(77,aqua)

(53,puce)

(8,lilac)

If we just expand
the buckets array,
several values are
hashed in the
wrong place

How to Resize:
1. Expand the buckets array
2. For every element in the old

hash table, re-distribute!
Recompute its position by
taking the mod with the new
length

When to Resize?
 In ArrayList, we were forced to resize when we ran out of room
-In SeparateChainingHashMap, never forced to resize, but we want to make sure the buckets don’t get

too long for good runtime

 How do we quantify “too full”?
-Look at the average bucket size: number of elements / number of buckets

LOAD FACTOR λ

(22,tan) (7,blue) (77,aqua)

(4,orange)

0

1

2

3

4

(1,red) (6,pink)

(8,lilac) (53,puce)

When to Resize?
 In ArrayList, we were forced to resize when we ran out of room
-In SeparateChainingHashMap, never forced to resize, but we want to make sure the buckets don’t get

too long for good runtime

 How do we quantify “too full”?
-Look at the average bucket size: number of elements / number of buckets

LOAD FACTOR λ

• If we resize when λ hits some constant
value like 1:
- We expect to see 1 element per bucket:

constant runtime!
- If we double the capacity each time, the

expensive resize operation becomes less and
less frequent

Java and Hash Functions

 Object class includes default functionality:
-equals

-hashCode

 If you want to implement your own hashCode you should:
-Override BOTH hashCode() and equals()

If a.equals(b) is true then a.hashCode() == b.hashCode() MUST also be true

 That requirement is part of the Object interface.
Other people’s code will assume you’ve followed this rule.

 Java’s HashMap (and HashSet) will assume you follow these rules and conventions for your
custom objects if you want to use your custom objects as keys.

CSE 373 SU 19 - ROBBIE WEBER 8

Good Hashing

9CSE 373 20 WI – HANNAH TANG

The hash function of a HashDictionary gets called a LOT:
-When first inserting something into the map

-When checking if a key is already in the map

-When resizing and redistributing all values into new structure

This is why it is so important to have a “good” hash function. A good hash function is:
1. Deterministic – same input should generate the same output

2. Efficiency - it should take a reasonable amount o time

3. Uniformity – inputs should be spread “evenly” over output range

public int hashFn(String s) {
return random.nextInt()

}

public int hashFn(String s) {
 int retVal = 0;
 for (int I = 0; I < s.length(); i++) {
 for (int j = 0; j < s.length(); j++) {
 retVal += helperFun(s, I, j);
 }
 }
 return retVal;
}

public int hashFn(String s) {
 if (s.length() % 2 == 0) {
 if (s.length(). % 2 == 0) {
 return 17;
 } else {
 return 43;
 }
 }
}

NOT deterministic

NOT effic
ient

NOT uniform

Questions?

Handling Collisions

 Solution 2: Open Addressing

 Resolves collisions by choosing a different location to store a value if natural choice is
already full.

 Type 1: Linear Probing

 If there is a collision, keep checking the next element until we find an open spot.
 int findFinalLocation(Key s)
 int naturalHash = this.getHash(s);
 int index = natrualHash % TableSize;

while (index in use) {
i++;

 index = (naturalHash + i) % TableSize;
}
return index;

CSE 373 SP 18 - KASEY CHAMPION 11

Linear Probing

0 1 2 3 4 5 6 7 8 9

CSE 373 SP 22 - CHAMPION 12

Insert the following values into the Hash Table using a hashFunction of % table size and
linear probing to resolve collisions
1, 5, 11, 7, 12, 17, 6, 25

1 511 761112 12 171725 25

Linear Probing

CSE 373 SP 18 - KASEY CHAMPION 13

0 1 2 3 4 5 6 7 8 9

Insert the following values into the Hash Table using a hashFunction of % table size and
linear probing to resolve collisions
38, 19, 8, 109, 10

38 1988 109

Problem:
• Linear probing causes clustering
• Clustering causes more looping when probing

Primary Clustering
When probing causes long chains of
occupied slots within a hash table

10910 10

Runtime
 When is runtime good?

 When we hit an empty slot
- (or an empty slot is a very short distance away)

 When is runtime bad?

 When we hit a “cluster”

 Maximum Load Factor?

 λ at most 1.0

 When do we resize the array?

 λ ≈ ½ is a good rule of thumb

CSE 373 SP 18 - KASEY CHAMPION 14

Can we do better?

CSE 373 SP 18 - KASEY CHAMPION 15

Quadratic Probing

CSE 373 SP 22 - CHAMPION 16

0 1 2 3 4 5 6 7 8 9

(49 % 10 + 0 * 0) % 10 = 9
(49 % 10 + 1 * 1) % 10 = 0

(58 % 10 + 0 * 0) % 10 = 8
(58 % 10 + 1 * 1) % 10 = 9
(58 % 10 + 2 * 2) % 10 = 2

891849

Insert the following values into the Hash Table using a hashFunction of % table size and
quadratic probing to resolve collisions
89, 18, 49, 58, 79, 27

58 79

(79 % 10 + 0 * 0) % 10 = 9
(79 % 10 + 1 * 1) % 10 = 0
(79 % 10 + 2 * 2) % 10 = 3

Problems:
If λ≥ ½ we might never find an empty spot

Infinite loop!
Can still get clusters

27

Uh-oh :(

Quadratic Probing

There were empty spots. What Gives?

Quadratic probing is not guaranteed to check every possible
spot in the hash table

The following is true:

Notice we have to assume p is prime to get that guarantee

Secondary Clustering

CSE 373 SP 22 - CHAMPION 18

0 1 2 3 4 5 6 7 8 9

Insert the following values into the Hash Table using a hashFunction of % table size and
quadratic probing to resolve collisions
19, 39, 29, 9

39 29 199

Secondary Clustering
When using quadratic probing sometimes need
to probe the same sequence of table cells, not
necessarily next to one another

(19 % 10 + 0 * 0) % 10 = 9

(39 % 10 + 0 * 0) % 10 = 9
(39 % 10 + 1 * 1) % 10 = 0

(29 % 10 + 0 * 0) % 10 = 9
(29 % 10 + 1 * 1) % 10 = 0
(29 % 10 + 2 * 2) % 10 = 3

(9 % 10 + 0 * 0) % 10 = 9
(9 % 10 + 1 * 1) % 10 = 0
(9 % 10 + 2 * 2) % 10 = 3
(9 % 10 + 3 * 3) % 10 = 8

Probing
-h(k) = the natural hash

-h’(k, i) = resulting hash after probing

-i = iteration of the probe

-T = table size

 Linear Probing:

 h’(k, i) = (h(k) + i) % T

 Quadratic Probing

 h’(k, i) = (h(k) + i2) % T

CSE 373 SP 18 - KASEY CHAMPION 19

Questions

20

Topics Covered:
- Writing good hash functions
- Open addressing to resolve collisions:

- Linear probing
- Quadratic probing

CSE 373 20 SP – CHAMPION & CHUN

Double Hashing

 Probing causes us to check the same indices over and over- can we check different ones instead?

 Use a second hash function!

 h’(k, i) = (h(k) + i * g(k)) % T

 int findFinalLocation(Key s)
 int naturalHash = this.getHash(s);
 int index = natrualHash % TableSize;

while (index in use) {
i++;

 index = (naturalHash + i*jumpHash(s)) % TableSize;
}
return index;

CSE 373 SP 18 - KASEY CHAMPION 21

<- Most effective if g(k) returns value relatively prime to table size

Second Hash Function

 Effective if g(k) returns a value that is relatively prime to table size
-If T is a power of 2, make g(k) return an odd integer
-If T is a prime, make g(k) return anything except a multiple of the TableSize

CSE 373 SP 18 - KASEY CHAMPION 22

Resizing: Open Addressing

Running Times

CSE 332 SU 18 – ROBBIE WEBER

In-Practice

Summary

 1. Pick a hash function to:
-Avoid collisions

-Uniformly distribute data

-Reduce hash computational costs

 2. Pick a collision strategy
-Chaining

- LinkedList

- AVL Tree

-Probing
- Linear

- Quadratic

- Double Hashing

CSE 373 SP 18 - KASEY CHAMPION 26

No clustering
Potentially more “compact” (λ can be higher)

Managing clustering can be tricky
Less compact (keep λ < ½)
Array lookups tend to be a constant factor faster than traversing pointers

Summary

Extra optimizations

CSE 373 SP 18 - KASEY CHAMPION 28

Other Hashing Applications

 We use it for hash tables but there are lots of uses! Hashing is a really good way of taking
arbitrary data and creating a succinct and unique summary of data.

29CSE 373 20 WI – HANNAH TANG

Cryptography

Hashing also ”hides” the data by translating it, this can
be used for security
▪ For password verification: Storing passwords in

plaintext is insecure. So your passwords are stored as
a hash

▪ Digital signatures

Fingerprinting
git hashes (“identification”)
▪ That crazy number that is attached to each of your

commits
▪ SHA-1 hash incorporates the contents of your change, the

name of the files and the lines of the files you changes

Ad Tracking
▪ track who has seen an ad if they saw it on a different

device (if they saw it on their phone don’t want to show it
on their laptop)

▪ https://panopticlick.eff.org will show you what is being
hashed about you

YouTube Content ID
▪ Do two files contain the same thing? Copyright

infringement
▪ Change the files a bit!

Caching
▪ you’ve downloaded a large video file, You want to

know if a new version is available, Rather than
re-downloading the entire file, compare your file’s
hash value with the server's hash value.

File Verification / Error Checking:
▪ compare the hash of a file instead of the file itself
▪ Find similar substrings in a large collection of

strings – detecting plagiarism

https://panopticlick.eff.org/

