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Discover unknown 
subgroups in data.
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Unlabeled examples (observations)
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Grouping unlabeled examples is called 
clustering.
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Clustering is unsupervised learning

The goal is to discover interesting things about 
the observations: 

● is there an informative way to visualize the 
data? 

● Can we discover subgroups among the 
variables or among the observations?
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Use cases for cluster analysis

● Customer segmentation 

○ understanding different customer 
segments to devise marketing strategies

● Recommender systems 

○ grouping together users with similar 
viewing patterns on Netflix, in order to 
recommend similar content

● Anomaly detection 

○ fraud detection, detecting defective 
mechanical parts
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To cluster your data, you'll follow these steps:

Source: Google Developers https://developers.google.com/machine-learning/clustering/workflow

https://developers.google.com/machine-learning/clustering/workflow
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To cluster your data, you'll follow these steps:

Source: Google Developers https://developers.google.com/machine-learning/clustering/workflow

https://developers.google.com/machine-learning/clustering/workflow
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First of all, 
you have to exclude all 
missing values and 
outliers
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Then, we normalize data 

Option1: 

If you only have a few values, you could use this 
simple rule:

Source: Google Developers https://developers.google.com/machine-learning/clustering/prepare-data

https://developers.google.com/machine-learning/clustering/prepare-data
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Normalizing data by rescaling 
(min-max normalization)

Option 2:

Typically, we use rescaling like this:

Rescalin results in a range [0, 1]

Source: Google Developers https://developers.google.com/machine-learning/clustering/prepare-data

https://developers.google.com/machine-learning/clustering/prepare-data
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Data standardization with z-score

Option 3:

Another alternative (especially if data has a 
normal distribution):

Source: Google Developers https://developers.google.com/machine-learning/clustering/prepare-data

https://developers.google.com/machine-learning/clustering/prepare-data
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To cluster your data, you'll follow these steps:

Source: Google Developers https://developers.google.com/machine-learning/clustering/workflow

https://developers.google.com/machine-learning/clustering/workflow


Prof. Dr. Jan Kirenz

How to create a similarity measure for a 
numeric feature? 

Picture source: Allbirds

size: 8 size: 11

● Feature X1: shoe size

Shoe A Shoe B
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Simple similarity measure 

● Feature X1: shoe size

Picture source: Allbirds

   8 11

X1: size

Shoe A Shoe B
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How to create a manual similarity measure for 
two numeric features? 

Picture source: Allbirds

● Feature X1: shoe size (numeric)
● Feature X2: price (numeric)

size: 8
price: 120

size: 11
price: 150
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Similarity measure for two numeric features 

Picture source: Allbirds

● Feature X1: shoe size (numeric)
● Feature X2: price (numeric)

X1: size

 8 11

120

150

X 2: p
ric

e

Shoe A

Shoe B
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Create a manual similarity measure 
for two numeric features 

Source: Google Developers: https://developers.google.com/machine-learning/clustering/similarity/manual-similarity

Since we don’t have enough data, 
we’ll simply scale the data without 
normalizing 

Example in Google Sheets

https://developers.google.com/machine-learning/clustering/similarity/manual-similarity
https://docs.google.com/spreadsheets/d/1cRrsCSvJonwObtQGg_MURQlglHJIW9wl3lhd1Xhs99k/edit?usp=sharing
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Create a manual similarity measure 
for two numeric features 

Source: Google Developers: https://developers.google.com/machine-learning/clustering/similarity/manual-similarity

https://developers.google.com/machine-learning/clustering/similarity/manual-similarity
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Create a manual similarity measure 
for two numeric features 

Source: Google Developers: https://developers.google.com/machine-learning/clustering/similarity/manual-similarity

https://developers.google.com/machine-learning/clustering/similarity/manual-similarity
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Create a manual similarity measure 
for two numeric features 

Source: Google Developers: https://developers.google.com/machine-learning/clustering/similarity/manual-similarity

https://developers.google.com/machine-learning/clustering/similarity/manual-similarity
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Create a manual similarity measure 
for two numeric features 

Source: Google Developers: https://developers.google.com/machine-learning/clustering/similarity/manual-similarity

https://developers.google.com/machine-learning/clustering/similarity/manual-similarity
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Create a manual similarity measure for a 
categorical feature 

Picture source: Allbirds

color: black color: blue

● Feature X3: color (categorical)
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Create a manual similarity measure for a 
categorical feature 

● Feature X3: color (categorical)

Picture source: Allbirds

color: black color: blue
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What about categorical features with multiple 
levels (multivalent)
● Movie genres: 

○ comedy, 

○ action, 

○ drama, 

○ non-fiction, 

○ biographical 

● Can be "action" and "comedy" simultaneously, or just "action"
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2: [action, drama]1: [comedy, action]

How to measure similarity?

[comedy, action] [action, drama]

A B
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UnionIntersection

Intersection & union 

A ∩ B A ∪ B
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Jaccard distance[comedy, action]

[action, drama]

Jaccard distance

[comedy action   drama]

Intersection: 
action

Union: 
[comedy, action, drama]

Union 
[comedy, action, drama]

Intersection 
action

A ∩ B
A ∪ B
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Create a manual similarity measure for a 
categorical feature 
● A: [“comedy”,”action”] and B: [“comedy”,”action”] = 1

● A: [“comedy”,”action”] and B: [“action”] = ½

● A: [“comedy”,”action”] and B: [“action”, "drama"] = ⅓

● A: [“comedy”,”action”] and B: [“non-fiction”,”biographical”] = 0

● Jaccard similarity. Calculate similarity using the ratio of common values
● Jaccard distance. Calculate distance using (1- Jaccard similarity)

Source: Google Developers https://developers.google.com/machine-learning/clustering/similarity/manual-similarity

https://developers.google.com/machine-learning/clustering/similarity/manual-similarity
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Popular 
distance 

metrics for 
numerical 
features
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Let’s start with a simple coordinate system (CS)

x

y
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We include one observation “A”

x

y

Point A (xA, yB)

xA

yA
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And another observation “B”

x

y

Point B (xB, yB)

Point A (xA, yA)

xA
xB

yA

yB
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How can we measure the distance between 
A and B?

x

y

Point B (xB, yB)

Point A (xA, yA)

xA
xB

yA

yB
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Imagine there are streets on the CS
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This would be the shortest distance
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Euclidean distance (L2 distance)

67600 +

102944

320.85
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Squared Euclidean distance (L2)
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L1 distance (Manhattan distance)
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To cluster your data, you'll follow these steps:

Source: Google Developers https://developers.google.com/machine-learning/clustering/workflow

https://developers.google.com/machine-learning/clustering/workflow
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Centroid-based Clustering

● Centroid-based algorithms are efficient 

● But sensitive to initial conditions and 
outliers.

● k-means is the most widely-used 
centroid-based clustering algorithm.

Source: Google Developers https://developers.google.com/machine-learning/clustering/clustering-algorithms

https://developers.google.com/machine-learning/clustering/clustering-algorithms
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Hierarchical Clustering

● Hierarchical clustering creates a tree of 
clusters.

● One advantage is that any number of 
clusters can be chosen by cutting the tree 
at the right level.

Source: Google Developers https://developers.google.com/machine-learning/clustering/clustering-algorithms

https://developers.google.com/machine-learning/clustering/clustering-algorithms
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To cluster your data, you'll follow these steps:

Source: Google Developers https://developers.google.com/machine-learning/clustering/workflow

https://developers.google.com/machine-learning/clustering/workflow
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Because clustering is unsupervised, no “truth” is 
available to verify results

● It mainly depends on the subjective 
interpretability 

● We have some kind of quality measures 
for some algorithms 
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Backup
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Density-based Clustering

● Density-based clustering connects areas of 
high example density into clusters

● Advantage: 

○ they do not assign outliers to clusters.

● Disadvantage: 

○ have difficulty with data of varying densities 
and high dimensions. 

Source: Google Developers https://developers.google.com/machine-learning/clustering/clustering-algorithms

https://developers.google.com/machine-learning/clustering/clustering-algorithms

