
Mirror
two-way real-time syncing



Goals of presentation
● Demo mirror
● Discuss implementation choices and evolution
● Walk through how it leverages GRPC
● General things that worked well



Demo Mirror



The problem
1. Desktop has CPUs + RAM + build system
2. Laptop has my IDE + windowing system



1st Step: Don’t build it yourself
● Check for tools in this problem space

○ NFS (sshfs, etc.): too slow, no inotify
○ rsync: too slow, not real-time
○ Remote desktop: too laggy
○ git: Commit + push for every file save is too slow
○ FTP: one-way

● If no existing tools, why not?



Approach sanity check
● Files change
● Check if needs sent
● Send file changes to other machine



Files Change: JDK7 Watch Service
● Push notifications
● Cross platform

○ inotify on Linux, etc.



Approach sanity check
● Get file notifications from OS
● Check if needs sent
● Send file changes to other machine



Send File Approaches
1. Master/slave

State is the simplest; all in the desktop.
Lots of chatter from laptop asking what to do.



Send File Approaches
2. Peer-based

Both sides know what each other has.
Like nodes in a cluster.



Send File Approaches
2b. Two-way streaming



Approach sanity check
● Get file notifications from OS
● Check if needs sent
● Push file changes to other machine



GRPC
● RPC framework
● Based on protobuf
● Rewrite of internal Google

library



Basic Service Definition



Approach sanity check
Mini design-doc:

● Get file notifications from OS
○ Java’s Watch Service

● Check if new/ignored file
○ Some logic we write

● Push file changes to other machine
○ GRPC



Checking files: 1st approach
● Map of path to mod time
● Exchange maps



Checking files: 1st approach
● Map of path to mod time
● Exchange maps
● Pro: very simple
● Con: no notion of tree, have

to check all paths



Checking files: 2nd approach
● Exchange trees, then do tree

traversal for the diffs



Checking files: 3rd approach
● Combined tree, where each node

has a local value + remote value



Checking files: Overall flow



Threading: Naive approach
● Shared tree
● Have to lock/synchronize 

readers and writers



Threading: Actor approach



Approach sanity check
● Get file notifications from OS
● Check if new/ignored file
● Push file changes to other machine



Takeaways/Recommendations
● Have a design in your head
● Know what tools you can leverage to make your work easy

○ grpc-java
○ Jgit
○ Watch Service (or watchman)

● Start simple
○ List of files, add tests
○ Then two trees
○ Then one tree

● For tools, have both unit + integration tests
● Judicious use of marker objects 


