Mirror

two-way real-time syncing

Goals of presentation

Demo mirror

Discuss implementation choices and evolution
Walk through how it leverages GRPC

General things that worked well

Demo Mirror

The problem

1. Desktop has CPUs + RAM + build system
2. Laptop has my IDE + windowing system

1st Step: Don't build it yourself

e Check for tools in this problem space

(@)

o O O O

NFS (sshfs, etc.): too slow, no inotify

rsync: too slow, not real-time

Remote desktop: too laggy

git: Commit + push for every file save is too slow
FTP: one-way

e If no existing tools, why not?

Approach sanity check

e Files change
e Check if needs sent
e Send file changes to other machine

Files Change: JDK7 Watch Service

Push notifications
Cross platform

O

inotify on Linux, etc.

@Test

public void test() throws IOException, InterruptedException {

//stepl

//step2

//step3

final WatchService service =
monitorCreationIn(directory(), withWatchService());

final String location = newFileIn(directory());

final WatchKey modification = service.take();

assertEquals(directory(), modification.watchable());

for (final WatchEvent event : modification.pollEvents()) {
if (OVERFLOW.equals(event.kind())) continue;
assertThat(event.count(), is(equalTo(1)));
assertEquals(ENTRY_CREATE, event.kind());

assertThat(
((Path) event.context()).endsWith(location),
is(true)

)s

modification.reset();

Approach sanity check

e (et file notifications from OS
e Check if needs sent
e Send file changes to other machine

Send File Approaches

1. Master/slave »
Do you need this change?
>
Yes
<
Here.
desktop laptop

State is the simplest; all in the desktop.
Lots of chatter from laptop asking what to do.

Send File Approaches

2. Peer-based

Here is bar.txt

&%

Here is foo.txt

desktop

Both sides know what each other has.
Like nodes in a cluster.

laptop

Send File Approaches

2b. Two-way streaming

<
<

desktop

<

laptop

Approach sanity check

e (et file notifications from OS
e Check if needs sent
e Push file changes to other machine

GRPC

Py RPC fram ewo I’k The main usage scenarios:

¢ Based on prOtObUf Efficiently connecting polyglot services in microservices style architecture
e Rewrite of internal Google

Connecting mobile devices, browser clients to backend services

library .

Generating efficient client libraries

Core Features that make it awesome:

Idiomatic client libraries in 10 languages

Highly efficient on wire and with a simple service definition framework

°
» Bi-directional streaming with http/2 based transport

Pluggable auth, tracing, load balancing and health checking

Basic Service Definition

8 service Mirror

9 rpc InitialSync itialSyncRequest) retu (InitialSyncResponse) {}
10

11 rpc StreamUpdates(stream Update) returns (stream Update) {}

12

13 rpc Ping(PingRequest) returns (PingResponse) {}

147F

15

16 // Message for the client's initial state.

17message InitialSyncRequest {
18 string remotePath = 1;

19 repeated string includes =
20 repeated string excludes
21 repeated Update state = 2;
22}

I
H W

Approach sanity check

Mini design-doc:

e (et file notifications from OS
o Java’s Watch Service

e Check if new/ignored file
o Some logic we write

e Push file changes to other machine
o GRPC

Checking files: 1st approach

Map of path to mod time
Exchange maps

desktop
foo.txt 1L
bar.txt 2L
dir/foo.txt 3L

laptop
foo.txt 1L
dir/foo.txt 5L

Checking files: 1st approach

Map of path to mod time
Exchange maps

Pro: very simple

Con: no notion of tree, have
to check all paths

desktop
foo.txt 1L
bar.txt 2L
dir/foo.txt 3L

laptop
foo.txt 1L
dir/foo.txt 5L

Checking files: 2nd approach

e Exchange trees, then do tree
traversal for the diffs

laptop

= remote tree = local tree

| Root | | Root |

Y A 4 Y Y

[diry foo.txt 1L | dir2/ | | foo.txt 5L

Checking files: 3rd approach

e Combined tree, where each node

has a local value + remote value

laptop

tree

Root

Y

Y

dir2f
local=2L
remote=

foo.txt
local=5L
remote=2L

Checking files: Overall flow

= Initial desktop

E

J

foo.txt 2L

desktop
= tree
Root

v v
dir2/ foo.txt
local= local=5L
remote=2L remote=2L

tree

Root

h 4

foo.txt
local=5L
remote=2L

= Initial laptop
foo.txt 5L
dirl/bar.txt 2L
laptop
=
v
dir2/
local=2L
remote=
= Updates
foo.txt 5L <data>

dirl/bar.txt 2L

Threading: Naive approach

Shared tree
Have to lock/synchronize
readers and writers

A

grpc updates

local file updates

diff

[

tree

| Root |

Y

dir2/
local=2L
remote=

Y

foo.txt
local=5L
remote=2L

Threading: Actor approach

FS events ||

Watch Service

grpc Listeners

Q

Sync Logic

= tree

Root I

h 4

foo.txt
local=5L
remote=2L

Save Local
Queue

A

File System

Send Remotg |
Queue

grpc sender

Approach sanity check

e (et file notifications from OS
e Check if new/ignored file
e Push file changes to other machine

Takeaways/Recommendations

e Have a design in your head

e Know what tools you can leverage to make your work easy
o grpc-java
o Jgit
o Watch Service (or watchman)
e Start simple
o List of files, add tests
o Then two trees
o Then one tree

e Fortools, have both unit + integration tests
e Judicious use of marker objects

