Term paper
DEPLOYR - framework for deploying custom real-time ML models into EMR
By Conor K. Corbin et. all
Presented by Abhijeet Sahdev
Background
Background
Background
Concepts & Creative Insights
Figure 1 [3]
Concepts & Creative Insights
Figure 1 [3]
Blue : research side (Stanford School of Medicine), Orange : clinical side (Stanford Health Care)
Concepts & Creative Insights
Figure 2 [6]
Concepts & Creative Insights
Figure 3 [8]
Concepts & Creative Insights
Concepts & Creative Insights
Concepts & Creative Insights
Figure 4 [10]
Concepts & Creative Insights
Concepts & Creative Insights
Critical Analysis
Critical Analysis
Relevance
Summary
References
[1] E. J. Odisho, et al., “Background and significance,” NPJ Digit. Med., Aug. 2023. [Online]. Available: https://pmc.ncbi.nlm.nih.gov/articles/PMC10436147/. [Accessed: Sept. 28, 2025].
[2] E. J. Odisho, et al., “Abstract,” NPJ Digit. Med., Aug. 2023. [Online]. Available: https://pmc.ncbi.nlm.nih.gov/articles/PMC10436147/. [Accessed: Sept. 28, 2025].
[3] E. J. Odisho, et al., “Summary of a DEPLOYR enabled model deployment,” NPJ Digit. Med., Fig. 1, Aug. 2023. [Online]. Available: https://pmc.ncbi.nlm.nih.gov/articles/PMC10436147/figure/ocad114-F1/. [Accessed: Sept. 28, 2025].
[4] Microsoft, “Azure Functions—Serverless Functions in Computing—Microsoft Azure,” 2023. [Online]. Available: https://azure.microsoft.com/en-us/products/functions/. [Accessed: Sept. 28, 2025].
References
[5] Streamlit, “Streamlit: a faster way to build and share data apps,” 2023. [Online]. Available: https://streamlit.io/. [Accessed: Sept. 28, 2025].
[6] E. J. Odisho, et al., “Mappings and Inferences in DEPLOYR-serve,” NPJ Digit. Med., Fig. 2, Aug. 2023. [Online]. Available: https://pmc.ncbi.nlm.nih.gov/articles/PMC10436147/figure/ocad114-F2/. [Accessed: Sept. 28, 2025].
[7] E. J. Odisho et al., “Training Data Source,” NPJ Digital Medicine, section “Training Data Source,” in: PMC10436147, 2023. [Online]. Available: https://pmc.ncbi.nlm.nih.gov/articles/PMC10436147/#ocad114-B27. [Accessed: Sept. 28, 2025].
[8] E. J. Odisho, et al., “Triggering Mechanism,” NPJ Digit. Med., Fig. 3, Aug. 2023. [Online]. Available: https://pmc.ncbi.nlm.nih.gov/articles/PMC10436147/figure/ocad114-F3/. [Accessed: Sept. 28, 2025].
�
References
[9] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, “Environment and Distribution shifts,” Dive into Deep Learning. [Online]. Available: https://d2l.ai/chapter_linear-classification/environment-and-distribution-shift.html. [Accessed: Sept. 28, 2025].
[10] E. J. Odisho, et al., “DEPLOYR performance monitoring,” NPJ Digit. Med., Fig. 5, Aug. 2023. [Online]. Available: https://pmc.ncbi.nlm.nih.gov/articles/PMC10436147/figure/ocad114-F5/. [Accessed: Sept. 28, 2025].
[11] E. J. Odisho, et al., “Results Table 2,” NPJ Digit. Med., Aug. 2023. [Online]. Available: https://pmc.ncbi.nlm.nih.gov/articles/PMC10436147/table/ocad114-T2/. [Accessed: Sept. 28, 2025].
[12] Evidently AI, “What is data drift in ML, and how to detect and handle it,” Evidently AI, Jan. 9, 2025. [Online]. Available: https://www.evidentlyai.com/ml-in-production/data-drift. [Accessed: Sept. 28, 2025].
References
[13] E. J. Odisho, et al., “Discussion,” NPJ Digit. Med., Aug. 2023. [Online]. Available: https://pmc.ncbi.nlm.nih.gov/articles/PMC10436147/. [Accessed: Sept. 28, 2025].
[14] HealthRex Lab, “DEPLOYR-dev,” GitHub repository. [Online]. Available: https://github.com/HealthRex/deployr-dev. [Accessed: Sept. 28, 2025].
[15] HealthRex Lab, “DEPLOYR-dash,” GitHub repository. [Online]. Available: https://github.com/HealthRex/deployr-dash. [Accessed: Sept. 28, 2025].
[16] HealthRex Lab, “DEPLOYR-serve,” GitHub repository. [Online]. Available: https://github.com/HealthRex/deployr-serve. [Accessed: Sept. 28, 2025].