How can we use XRF to solve ‘The Mercury Mystery’?
By Mike McKee
01/01/2016 | Slide 1
List of Contents
Slide 2
Mercury in false colour (Credit: NASA)
01/01/2016 | Slide 2
The Mercury Mystery
Slide 3
Artist’s interpretation of protoplanetary disk (Credit: NASA)
01/01/2016 | Slide 3
The Mercury Mystery
Slide 4
Peplowski, Patrick N. et al. (2011). “Radioactive Elements on Mercury’s Surface from MESSENGER: Implications for the Planet’s Formation and Evolution”. In:Science333.6051, pp. 1850–1852.issn: 0036-8075.doi:10.1126/science.1211576. eprint: https://science.sciencemag.org/content/333/6051/1850.full.pdf.url:https://science.sciencemag.org/content/333/6051/1850.
Thorium against potassium abundances across different planetary bodies in the Solar System (Peplowski et al. 2011).
01/01/2016 | Slide 4
Motivation
Slide 5
BepiColombo trajectory (Credit: ESA)
01/01/2016 | Slide 5
Regolith Effects
Slide 6
SEM image of soda lime glass spheres
01/01/2016 | Slide 6
Regolith Effects – Grain Size Effect
Slide 7
SEM images of various regolith analogues (Weider et al. 2011)
Bunce, Emma J. et al. (Nov. 2020). “The BepiColombo Mercury Imaging X-Ray Spectrometer: Science Goals, Instrument Performance and Operations”. In: Space Science Reviews216.8, p. 126.issn: 1572-9672.doi:10.1007/s11214-020-00750-2.url:https://doi.org/10.1007/s11214-020-00750-2.
Weider, Shoshana Z. et al. (2011a). “Planetary X-ray fluorescence analogue laboratory experiments and an elemental abundance algorithm for C1XS”. In: Planetary and Space Science59.13. Exploring Phobos, pp. 1393–1407.issn: 0032-0633.doi:https://doi.org/10.1016/j.pss.2011.05.005.url:http://www.sciencedirect.com/science/article/pii/S0032063311001607.
01/01/2016 | Slide 7
Regolith Effects – Incidence Angle Effect
Slide 8
Incoming x-rays
Penetration depth
Fluorescing x-rays
Path length
Variation in penetration depth with different incidence angles
01/01/2016 | Slide 8
Electron Induced X-ray Emission
Slide 9
Nightside fluorescence events induced by electron precipitation (Lindsay et al. 2016)
Starr, Richard D., David Schriver, et al. (2012). “MESSENGER detection of electron-induced X-ray fluorescence from Mercury’s surface”. In: Journal of Geophysical Research: Planets117.E12.doi:https://doi.org/10.1029/2012JE004118. eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2012JE004118.url:https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2012JE004118.
Lindsay, S.T. et al. (2016). “MESSENGER X-ray observations of magnetosphere–surface interaction on the nightside of Mercury”. In: Planetary and Space Science125, pp. 72–79.issn: 0032-0633.doi:https://doi.org/10.1016/j.pss.2016.03.005.url:http://www.sciencedirect.com/science/article/pii/S0032063315301501.
01/01/2016 | Slide 9
Electron Stimulated Desorption
Slide 10
Killen, Rosemary M. et al. (2018). “Understanding Mercury’s Exosphere: Models Derived from MESSENGER Observations”. In: Mercury: The View after MESSENGER. Ed. by Sean C. Solomon, Larry R. Nittler, and Brian J. Editors Anderson. Cambridge Planetary Science. Cambridge University Press, pp. 407–429.doi:10.1017/9781316650684.016�
Mercury’s exosphere (Credit: NASA)
01/01/2016 | Slide 10
MIXS
Slide 11
MIXS in the cleanroom
01/01/2016 | Slide 11
FPA
Slide 12
Top: FPA. Bottom: Detector (Bunce et al. 2020)
Bunce, Emma J. et al. (Nov. 2020). “The BepiColombo Mercury Imaging X-Ray Spectrometer: Science Goals, Instrument Performance and Operations”. In: Space Science Reviews216.8, p. 126.issn: 1572-9672.doi:10.1007/s11214-020-00750-2.url:https://doi.org/10.1007/s11214-020-00750-2.
01/01/2016 | Slide 12
The Ground Reference Facility
Slide 13
Exterior of MIXS Ground Reference Facility
Interior of MIXS Ground Reference Facility
01/01/2016 | Slide 13
X-ray Source
Slide 14
X-ray source
Flay and Leach 2012
Flay, Nadia and Richard Leach (Jan. 2012). Application of the optical transfer function in X-ray computed tomography – a review
Weider, Shoshana Z., Larry R. Nittler, et al. (2015). “Evidence for geochemical terranes on Mercury: Global mapping of major elements with MESSENGER’s X-Ray Spectrometer”. In: Earth and Planetary ScienceLetters416, pp. 109–120.issn: 0012-821X.doi:https://doi.org/10.1016/j.epsl.2015.01.023.url:https://www.sciencedirect.com/science/article/pii/S0012821X15000448�
Weider, Nittler, et al. 2015
01/01/2016 | Slide 14
Electron Gun
Slide 15
Electron gun
Ho, George C. et al. (2011). “Observations of suprathermal electrons in Mercury’s magnetosphere during the three MESSENGER flybys”. In: Planetary and Space Science59.15. Mercury after the MESSENGER flybys, pp. 2016–2025.issn: 0032-0633.doi:https://doi.org/10.1016/j.pss.2011.01.011.url:https://www.sciencedirect.com/science/article/pii/S0032063311000390.
01/01/2016 | Slide 15
Vacuum Pump and Cooler
Slide 16
Scroll pump
Turbo pump
Ethanol bath
01/01/2016 | Slide 16
Rotating Arms
Slide 17
Blue circles indicate motor that rotates arms
01/01/2016 | Slide 17
Mass Spectrometer
Slide 18
Mass spectrometer on exterior of chamber
01/01/2016 | Slide 18
Sample Stage
Slide 19
Sample stage
01/01/2016 | Slide 19
XRS vs. MIXS
Slide 20
XRS Spectrum
FWHM = 880 eV @ 5.90 keV
(Schlemm et al., 2007)
MIXS Spectrum
FWHM = 190 eV @ 5.90 keV
Schlemm C.E. et al. (2007) The X-ray Spectrometer on the MESSENGER Spacecraft.
In: Domingue D.L., Russell C.T. (eds) The Messenger Mission to Mercury. Springer, New York, NY.
https://doi.org/10.1007/978-0-387-77214-1_11
Energy/keV
Counts
01/01/2016 | Slide 20
Experiment Plan
Slide 21
SEM image of soda lime glass 30 µm sample
Mie scattering results of soda lime glass 30 µm sample
01/01/2016 | Slide 21
Experiment
Slide 22
Weider, Shoshana Z. et al. (2011). “Planetary X-ray fluorescence analogue laboratory experiments and an elemental abundance algorithm for C1XS”. In: Planetary and Space Science59.13. Exploring Phobos, pp. 1393–1407.issn: 0032-0633.doi:https://doi.org/10.1016/j.pss.2011.05.005.url:http://www.sciencedirect.com/science/article/pii/S0032063311001607
Näränen, Jyri et al. (2009). “Regolith effects in planetary X-ray fluorescence spectroscopy: Laboratory studies at 1.7–6.4keV”. In: Advances in Space Research44.3, pp. 313–322.issn: 0273-1177.doi:https://doi.org/10.1016/j.asr.2009.03.023.url:https://www.sciencedirect.com/science/article/pii/S0273117709002105
Exterior of MIXS Ground Reference Facility
01/01/2016 | Slide 22
Future Steps
Slide 23
Morlok, Andreas et al. (2019). “Mid-infrared spectroscopy of planetary analogues: A database for planetary remote sensing”. In:Icarus324, pp. 86–103.issn: 0019-1035.doi:https://doi.org/10.1016/j.icarus.2019.02.010.url:https://www.sciencedirect.com/science/article/pii/S0019103518306754
Maturilli, A., J. Helbert, and G. Arnold (2019). “The newly improved set-up at the Planetary Spectroscopy Laboratory (PSL)”. In: Infrared Remote Sensing and Instrumentation XXVII. Ed. by Marija Strojnik and Gabriele E. Arnold. Vol. 11128. International Society for Optics and Photonics. SPIE, pp. 187–196.doi:10.1117/12.2529266.url:https://doi.org/10.1117/12.2529266.
BepiColombo Mercury flyby (Credit: ESA)
01/01/2016 | Slide 23
Thank you!
Slide 24
01/01/2016 | Slide 24