
CS61B
Lectures 38: Compression
● Prefix Free Codes
● Huffman Coding
● Theory of Compression
● LZW (Extra)
● Lossy Compression (Extra)

Zip Files, How Do They Work?

Size in Bytes

$ zip mobydick.zip mobydick.txt
 adding: mobydick.txt (deflated 59%)
$ ls -l
-rw-rw-r-- 1 jug jug 643207 Apr 24 10:55 mobydick.txt
-rw-rw-r-- 1 jug jug 261375 Apr 24 10:55 mobydick.zip

File is
unchanged
by zipping /
unzipping.

$ unzip mobydick.zip
replace mobydick.txt? [y]es, [n]o, [A]ll, [N]one, [r]ename: r
new name: unzipped.txt
 inflating: unzipped.txt
$ diff mobydick.txt unzipped.txt
$

Compression Model #1: Algorithms Operating on Bits

In a lossless algorithm we require that no information is lost.

● Text files often compressible by 70% or more.

01010101000001010101110... Compression
Algorithm C 1001010101...

01010101000001010101110...Decompression
Algorithm C-11001010101...

Bitstream B Compressed bits C(B)

C(B) B

Prefix Free Codes

Increasing Optimality of Coding

By default, English text is usually represented by sequences of characters, each
8 bits long, e.g. ‘d’ is 01100100.

Easy way to compress: Use fewer than 8 bits for each letter.

● Have to decide which bit sequences should go with which letters.
● More generally, we’d say which codewords go with which symbols.

word binary hexadecimal

dog 01100100 01101111 01100111 64 6f 67

Example: Morse code.

● Goal: Compact representation.
● What is – – • – – •?

More Code: Mapping Alphanumeric Symbols to Codewords

Example: Morse code.

● Goal: Compact representation.
● What is – – • – – •? It’s ambiguous!

○ MEME
○ GG

Note:

● Can think of dot as 0, dash as 1.
● Operators pause between codewords

to avoid ambiguity.
○ Pause acts as a 3rd symbol.

More Code: Mapping Alphanumeric Symbols to Codewords

Alternate strategy: Avoid ambiguity by making code prefix free.

Morse Code (as a Tree)

From Wikimedia

https://upload.wikimedia.org/wikipedia/commons/thumb/1/19/Morse-code-tree.svg/2000px-Morse-code-tree.svg.png

A prefix-free code is one in which no codeword is a prefix of any other. Example for
English:

Prefix-Free Codes [Example 1]

space 1

E 01

T 001

A 0001

O 00001

I 000001

...

I ATE: 0000011000100101

start

space

E

T

A

0 1

O

I

10

10

10

10

10

10

...

A prefix-free code is one in which no codeword is a prefix of any other. Example for
English:

Prefix-Free Codes [Example 2]

space 111

E 010

T 1101

A 1011

O 1001

I 1000

...

I ATE: 100011110111101010

start
0 1

spaceE

A TOI

...

... ...

10

0 1

0

...

1

0 1

0 1

0 1 0 1 0 1

0 1

Prefix Free Code Design

Observation: Some prefix-free codes are better for some texts than others.

space 1

E 01

T 001

A 0001

O 00001

I 000001

...

space 111

E 010

T 1101

A 1011

O 1001

I 1000

...

Better for EEEEAT
(8+3+4 = 15 bits).

Much worse for JOSH
(25+5+8+10 = 48 bits).

Worse for EEEEAT
(12+4+4 = 20 bits).

Better for JOSH
(7+4+6+6 = 23 bits).

Observation: It’d be useful to have a procedure that calculates the “best” code
for a given text.

Shannon Fano Codes (Extra)

Code Calculation Approach #1 (Shannon-Fano Coding)

● Count relative frequencies of all characters in a text.
● Split into ‘left’ and ‘right halves’ of roughly equal frequency.

○ Left half gets a leading zero. Right half gets a leading one.
○ Repeat.

Symbol Frequency

我 0.35

爸 0.17

是 0.17

李 0.16

刚 0.15

Left half

Right half

我 爸 是 李 刚

35% of all characters are 我

Code Calculation Approach #1 (Shannon-Fano Coding)

● Count relative frequencies of all characters in a text.
● Split into ‘left’ and ‘right halves’ of roughly equal frequency.

○ Left half gets a leading zero. Right half gets a leading one.
○ Repeat.

Symbol Frequency Code

我 0.35 0...

爸 0.17 0...

是 0.17 1...

李 0.16 1...

刚 0.15 1...

我 爸 是 李 刚

Left half

Right half

0 1

Code Calculation Approach #1 (Shannon-Fano Coding)

● Count relative frequencies of all characters in a text.
● Split into ‘left’ and ‘right halves’ of roughly equal frequency.

○ Left half gets a leading zero. Right half gets a leading one.
○ Repeat.

Symbol Frequency Code

我 0.35 00

爸 0.17 01

是 0.17 1...

李 0.16 1...

刚 0.15 1... 我 爸

是 李 刚

Left half

Right half 10

0 1

Code Calculation Approach #1 (Shannon-Fano Coding)

● Count relative frequencies of all characters in a text.
● Split into ‘left’ and ‘right halves’ of roughly equal frequency.

○ Left half gets a leading zero. Right half gets a leading one.
○ Repeat.

Symbol Frequency Code

我 0.35 00

爸 0.17 01

是 0.17 1...

李 0.16 1...

刚 0.15 1... 我 爸

是 李 刚Left half

Right half

10

0 1

Code Calculation Approach #1 (Shannon-Fano Coding)

● Count relative frequencies of all characters in a text.
● Split into ‘left’ and ‘right halves’ of roughly equal frequency.

○ Left half gets a leading zero. Right half gets a leading one.
○ Repeat.

Symbol Frequency Code

我 0.35 00

爸 0.17 01

是 0.17 10

李 0.16 11...

刚 0.15 11... 我 爸 是 李 刚

Left half

Right half

10

0 1 0 1

Code Calculation Approach #1 (Shannon-Fano Coding)

● Count relative frequencies of all characters in a text.
● Split into ‘left’ and ‘right halves’ of roughly equal frequency.

○ Left half gets a leading zero. Right half gets a leading one.
○ Repeat.

Symbol Frequency Code

我 0.35 00

爸 0.17 01

是 0.17 10

李 0.16 110

刚 0.15 111

我 爸 是

李 刚

10

0 1 0 1

0 1

Code Calculation Approach #1 (Shannon-Fano Coding)

Shannon-Fano coding is NOT optimal. Does a good job, but possible to find ‘better’
codes (see CS170).

● Optimal solution assigned (and solved) as alternative to a final exam:
http://www.huffmancoding.com/my-uncle/scientific-american

Symbol Frequency Code

我 0.35 00

爸 0.17 01

是 0.17 10

李 0.16 110

刚 0.15 111

我 爸 是

李 刚

10

0 1 0 1

0 1

http://www.huffmancoding.com/my-uncle/scientific-american

Huffman Coding

Code Calculation Approach #2: Huffman Coding

Calculate relative frequencies.

● Assign each symbol to a node with weight = relative frequency.
● Take the two smallest nodes and merge them into a super node with weight

equal to sum of weights.
● Repeat until everything is part of a tree.

我 爸 是 李 刚
0.35 0.17 0.17 0.16 0.15

我 爸 是 李 刚
0.35 0.17 0.17

0.31

0 1

我 爸 是 李 刚
0.35

0.31

0 1
0.34

0 1

35% of characters in
input are 我. 16% of characters in

input are 李.

Code Calculation Approach #2: Huffman Coding

Calculate relative frequencies.

● Assign each symbol to a node with weight = relative frequency.
● Take the two smallest nodes and merge them into a super node with weight

equal to sum of weights.
● Repeat until everything is part of a tree.

我 爸 是 李 刚
0.35

0.31

0 1
0.34

0 1

我 爸 是 李 刚
0.35

0 10 1

0.65
10

我 爸 是 李 刚

0 10 1

100

1

Efficiency Assessment: http://yellkey.com/start

How many bits per symbol do we need to compress a file with the character
frequencies listed below using the Huffman code that we created?

Symbol Frequency Huffman
Code

我 0.35 0

爸 0.17 100

是 0.17 101

李 0.16 110

刚 0.15 111

A. (1*1 + 4*3) / 5
 = 2.6 bits per symbol

B. (0.35) * 1 + (0.17 + 0.17 + 0.16 + 0.15) * 3
 = 2.3 bits per symbol

C. Not enough information, we need to know
the exact characters in the file being
compressed.

Efficiency Assessment of Huffman Coding

How many bits per symbol do we need to compress a file with the character
frequencies listed below using the Huffman code that we created?

B. (0.35) * 1 + (0.17 + 0.17 + 0.16 + 0.15) * 3 = 2.3 bits per symbol.

Symbol Frequency Huffman
Code

我 0.35 0

爸 0.17 100

是 0.17 101

李 0.16 110

刚 0.15 111

Example assuming
we have 100 symbols:
● 35 * 1 = 35 bits
● 17 * 3 = 51 bits
● 17 * 3 = 51 bits
● 16 * 3 = 48 bits
● 15 * 3 = 45 bits

Total: 230 bits
230 / 100 = 2.3
bits/symbol

Efficiency Assessment of Huffman Coding

If we had a file with 350 我 characters , 170 爸 characters , 170 是 characters,
160 李 characters, and 150 刚 characters, how many total bits would we need
to encode this file using 32 bit Unicode? Using our Huffman code?

You don’t need a calculator.
Symbol Frequency Huffman

Code

我 0.35 0

爸 0.17 100

是 0.17 101

李 0.16 110

刚 0.15 111

2.30 bits per symbol for texts with this distribution

Efficiency Assessment of Huffman Coding

If we had a file with 350 我 characters , 170 爸 characters , 170 是 characters,
160 李 characters, and 150 刚 characters, how many total bits would we need
to encode this file using 32 bit Unicode? Using our Huffman code?

1000 total characters.

Space used:

● 32 bit Unicode: 32,000 bits.
● Huffman code: 2,300 bits.

Our code is 14 times as efficient!

● Can only encode strings with these 5 symbols.

2.30 bits per symbol for texts with this distribution

Symbol Frequency Huffman
Code

我 0.35 0

爸 0.17 100

是 0.17 101

李 0.16 110

刚 0.15 111

Huffman vs. Shannon-Fano

Shannon-Fano code below results in an average of 2.31 bits per symbol,
whereas Huffman is only 2.3 bits per symbol.

● Huffman coded file is 0.35*1 + 0.65*3 = 2.3 bits per symbol.

Symbol Frequency S-F Code Huffman
Code

我 0.35 00 0

爸 0.17 01 100

是 0.17 10 101

李 0.16 110 110

刚 0.15 111 111

Strictly better than
Shannon-Fano
coding. There is NO
downside to Huffman
coding instead.

Huffman Coding
Data Structures

Question: For encoding (bitstream to compressed bitstream), what is a natural
data structure to use? Assume characters are of type Character, and bit
sequences are of type BitSequence.

Prefix-Free Codes

space 111

E 010

T 1101

A 1011

O 1001

I 1000

... 0111

space 1

E 01

T 001

A 0001

O 00001

I 000001

...

I ATE: 0000011000100101 I ATE: 100011110111101010

Question: For encoding (bitstream to compressed bitstream), what is a natural
data structure to use? chars are just integers, e.g. ‘A’ = 65. Two approaches:

● Array of BitSequence[], to retrieve, can use character as index.
● How is this different from a HashMap<Character, BitSequence>? Lookup in

a hashmap consists of:
○ Compute hashCode.
○ Mod by number of buckets.
○ Look in a linked list.

Compared to HashMaps, Arrays are faster (just get the item from the array), but
use more memory if some characters in the alphabet are unused.

Prefix-Free Codes

I ATE: 0000011000100101 I ATE: 100011110111101010

Question: For decoding (compressed bitstream back to bitstream), what is a
natural data structure to use?

Prefix-Free Codes

space 111

E 010

T 1101

A 1011

O 1001

I 1000

... 0111

space 1

E 01

T 001

A 0001

O 00001

I 000001

...

I ATE: 0000011000100101 I ATE: 100011110111101010

Question: For decoding (compressed bitstream back to bitstream), what is a
natural data structure to use?

● We need to look up longest matching prefix, an operation that Tries excel
at.

Prefix-Free Codes

space 111

E 010

T 1101

A 1011

O 1001

I 1000

... 0111

space 1

E 01

T 001

A 0001

O 00001

I 000001

...

I ATE: 0000011000100101 I ATE: 100011110111101010

Question: For decoding (compressed bitstream back to bitstream), what is a
natural data structure to use?

● We need to look up longest matching prefix, an operation that Tries excel
at.

Prefix-Free Codes

space 111

E 010

T 1101

A 1011

O 1001

I 1000

... 0111

space 1

E 01

T 001

A 0001

O 00001

I 000001

...

I ATE: 0000011000100101 I ATE: 100011110111101010

Question: For decoding (compressed bitstream back to bitstream), what is a
natural data structure to use?

● We need to look up longest matching prefix, an operation that Tries excel
at.

Prefix-Free Codes

space 111

E 010

T 1101

A 1011

O 1001

I 1000

... 0111

space 1

E 01

T 001

A 0001

O 00001

I 000001

...

I ATE: 0000011000100101 I ATE: 100011110111101010

Question: For decoding (compressed bitstream back to bitstream), what is a
natural data structure to use?

● We need to look up longest matching prefix, an operation that Tries excel
at.

Prefix-Free Codes

space 111

E 010

T 1101

A 1011

O 1001

I 1000

... 0111

space 1

E 01

T 001

A 0001

O 00001

I 000001

...

I ATE: 0000011000100101 I ATE: 100011110111101010

Huffman Coding in Practice

Huffman Compression

Two possible philosophies for using Huffman Compression:

1. For each input type (English text, Chinese text, images, Java source code,
etc.), assemble huge numbers of sample inputs for that category. Use each
corpus to create a standard code for English, Chinese, etc.

2. For every possible input file, create a unique code just for that file. Send the
code along with the compressed file.

What are some advantages/disadvantages of each idea? Which is better?

$ java HuffmanEncodePh1 ENGLISH mobydick.txt
$ java HuffmanEncodePh1 BITMAP horses.bmp

$ java HuffmanEncodePh2 mobydick.txt
$ java HuffmanEncodePh2 horses.bmp

Huffman Compression (Your Answers)

Two possible philosophies for using Huffman Compression:

1. Build one corpus per input type.
2. For every possible input file, create a unique code just for that file. Send the

code along with the compressed file.

What are some advantages/disadvantages of each idea? Which is better?

● First one: What if the file has multiple data types, e.g. Chinese and English.
● Second one: Individual code is more “secure”.
● Second one: Compression for each file requires more work.
● Third approach: Try every code, and use the best one.
● First approach: Could be faster, because you have already built a code.
● If data is not compressible, may as well use #1.
● Both allow you to support arbitrary file types.

Huffman Compression (My Answers)

Two possible philosophies for using Huffman Compression:

1. Build one corpus per input type.
2. For every possible input file, create a unique code just for that file. Send the

code along with the compressed file.

What are some advantages/disadvantages of each idea? Which is better?

● Approach 1 will result in suboptimal encoding.
● Approach 2 requires you to use extra space for the codeword table in the

compressed bitstream.

For very large inputs, the cost of including the codeword table will become
insignificant.

Huffman Compression

Two possible philosophies for using Huffman Compression:

1. For each input type (English text, Chinese text, images, Java source code,
etc.), assemble huge numbers of sample inputs for that category. Use each
corpus to create a standard code for English, Chinese, etc.

2. For every possible input file, create a unique code just for that file. Send the
code along with the compressed file.

In practice, Philosophy 2 is used in the real world.

Huffman Compression Example [Demo Link]

Given input text: 我我刚刚刚是我是我刚李刚我李是爸李爸李是李我我李刚
是我是刚爸是刚我爸我李是是李是我我刚爸是李我我我是爸我是我爸是我
爸是我是刚我是爸刚爸我刚我我刚爸我我爸我刚爸爸李李李李我我爸李我
我刚爸李我我李我爸我我

Step 1: Count frequencies.

Step 2: Build encoding array and decoding trie.

Step 3: Write decoding trie to output.huf.

Step 4: Write codeword for each symbol to output.huf.

Output bits: 010101010101001…00111111111101…

Decoding Trie Codewords

我 爸 是 李 刚

0 10 1

100

1

0.35 0.17 0.17 0.16 0.15
Decoding Trie

See optional textbook for how to do this.

https://docs.google.com/presentation/d/1DWuSkE9MxQPUTjbSJCMe54rCim4eAwM4aFRvhqq5_Hs/edit?usp=sharing

Huffman Decompression Example [Demo Link]

Given input bitstream: 010101010101001…00111111111101…

Step 1: Read in decoding trie.

Step 2: Use codeword bits to walk down the trie, outputting symbols every time
you reach a leaf.

● Note: Symbols are really just bits!
○ 我 is 111001011000100010010001 in Unicode.
○ “Outputting 我” actually means outputting these 32 bits.

Output symbols: 我我刚刚刚是…
● Output bits: 111001011000100010010001...

我 爸 是 李 刚

0 10 1

100

1

0.35 0.17 0.17 0.16 0.15

Decoding Trie Codewords

https://docs.google.com/presentation/d/1x7WXK5-X0bvxk6Q1IBuYXGibZzyRDgr8IIb30YiR4iU/edit?usp=sharing

Huffman Coding Summary

Given a file X.txt that we’d like to compress into X.huf:

● Consider each b-bit symbol (e.g. 8-bit chunks, Unicode characters, etc.) of
X.txt, counting occurrences of each of the 2b possibilities, where b is the size
of each symbol in bits.

● Use Huffman code construction algorithm to create a decoding trie and
encoding map. Store this trie at the beginning of X.huf.

● Use encoding map to write codeword for each symbol of input into X.huf.

To decompress X.huf:

● Read in the decoding trie.
● Repeatedly use the decoding trie’s longestPrefixOf operation until all bits in

X.hug have been converted back to their uncompressed form.

See Huffman.java for an example implementation on 8-bit symbols.

http://algs4.cs.princeton.edu/55compression/Huffman.java

Compression Theory

Compression Algorithms (General)

The big idea in Huffman Coding is representing common symbols with small
numbers of bits.

Many other approaches, e.g.

● Run-length encoding: Replace each character by itself concatenated with
the number of occurrences.
○ Rough idea: XXXXXXXXXYYYYXXXXX -> X10Y4X5

● LZW: Search for common repeated patterns in the input. See extra slides.

General idea: Exploit redundancy and existing order inside the sequence.

● Sequences with no existing redundancy or order may actually get enlarged.

Comparing Compression Algorithms

Different compression algorithms achieve different compression ratios on
different files.

We’d like to try to compare them in some nice way.

● To do this, we’ll need to refine our model from slide 3 to be a bit more
sophisticated.

Let’s start with a straightforward puzzle.

SuperZip

Suppose an algorithm designer says their algorithm SuperZip can compress any
bitstream by 50%. Why is this impossible?

Universal Compression: An Impossible Idea

Argument 1: If true, they’d be able to compress any bitstream down to a single
bit. Interpreter would have to be able to do the following (impossible) task for
ANY output sequence.

01010101000001010101110101010100001111001101001

01010101000001010101110 101010100001 111001

Compression Compression Compression

101Compression001 Compression

Universal Compression: An Impossible Idea

Argument 2: There are far fewer short bitstreams than long ones. Guaranteeing
compression even once by 50% is impossible. Proof:

● There are 21000 1000-bit sequences.
● There are only 1+2+4+...+2500 = 2501 - 1 bit streams of length ≤ 500.
● In other words, you have 21000 things and only 2501 - 1 places to put them.
● Of our 1000-bit inputs, only roughly 1 in 2499 can be compressed by 50%!

A Sneaky Situation

Universal compression is impossible, but the following example implies that
comparing compression algorithms could still be quite difficult.

Suppose we write a special purpose compression algorithm that simply
hardcodes small bit sequences into large ones.

● Example, represent GameOfThronesSeason6-Razor1911-Rip-Episode1.mp4
as 010.

010 00000000001111111111...
GameOfThronesSeason6-
Razor1911-Rip-Episode1.
mp4

Compressed Bits
Decompression

Algorithm C-1

3 bits

8927472560 bits

A Sneaky Situation

Suppose we write a special purpose compression algorithm that simply
hardcodes small bit sequences into large ones.

● Example, represent GameOfThronesSeason6-Razor1911-Rip-Episode1.mp4
as 010.

To avoid this sort of trickery, we should include the bits needed to encode the
decompression algorithm itself.

010 00000000001111111111...
GameOfThronesSeason6-
Razor1911-Rip-Episode1.
mp4

Compressed Bits
Decompression

Algorithm C-1

3 bits

8927472560 bits

8927472707 bits

Compression Model #2: Self-Extracting Bits

As a model for the decompression process, let’s treat the algorithm and the
compressed bitstream as a single sequence of bits.

● If you want a concrete idea to hold on to, imagine storing the compressed
bitstream as a byte[] variable in a .java file. We’ll show an example on the
coming slides involving compressing an image.

● Can think of the algorithm + compressed bitstream as an input to an
interpreter. Interpreter somehow executes those bits (see 61A)
○ At the very “bottom” of these abstractions is some kind of physical

machine (see 61C).

0111000001110101...

 SelfExtractingGoT.java
Interpreter

8,927,472,560 bits

0100001001001101...

GameOfThronesSeason6-R
azor1911-Rip-Episode1.mp4

8,927,472,707 bits

HugPlant

Huffman Coding can be used to compress any data, not just text. In bitmap
format, the plant below is simply the stream of bits shown on the right.

42 4d 7a 00 10 00 00 00 00
00 7a 00 00 00 6c 00 00 00
00 02 00 00 00 02 00 00 01
00 20 00 03 00 00 00 00 00
10 00 12 0b 00 00 12 0b 00
00 00 00 00 00 00 00 00 00
00 00 ff 00 00 ff 00 00 ff
00 00 00 00 00 00 ff 01 00
00 00 00 00 00 00 00 00 00
00 01 00 00 00 00 00 00 00
00 00 00 00 01 00 ...

Total: 8389584 bits

Original Uncompressed Bits B

74 68 65 20 70 61 73 73 63 6F 64 65 20 69 73 20
68 75 67 39 31 38 32 37 78 79 7A 2E 65 75 7a c0
09 eb cd d4 2a 55 9f d8 98 d1 4e e7 97 56 58 68
0c 7a 43 dd 80 00 7b 11 58 f4 75 73 77 bc 26 01
e0 92 28 ef 47 24 66 9b de 8b 25 04 1f 0e 87 bd
87 9e 03 c9 f1 cf ad fa 82 dc 9f a1 31 b5 79 13
9b 95 d5 63 26 8b 90 5e d5 b0 17 fb e9 c0 e6 53
c7 cb dd 5f 77 d3 bd 80 f9 b6 5e 94 aa 74 34 3a
a9 c1 ca e6 b8 9c 60 ab 36 3b a5 8a b4 3a 5c 5a
62 e9 2f 16 4c 34 60 6e 51 28 36 2c e7 4e 50 be
c0 15 1b 01 d9 c0 bd b4 20 87 42 be d4 e2 23 a2
b6 84 22 4c cf 74 cd 4f 23 06 54 e6 c2 0f 2d bd
e5 81 f4 c6 de 15 59 f1 68 a4 a5 88 16 b0 7f bf
8a 1d 98 bd 33 b4 d5 71 22 93 81 af e0 cc ce 12
57 23 62 3a e4 3d 8c f1 12 8d a5 40 3b 70 d6 9b
12 49 62 8d 6f d4 52 f6 7f d5 11 7c ca 07 dd e3
dc 1c 7f c4 a4 69 77 6e 5e 60 db 5a 69 01 95 c8
d7 2e 57 62 b7 8e 5c 51 f9 70 55 1b 7c ba 68 bc

HugPlant Compressed

00 20 00 f4 c3 b7 6d c2 31 24 92 dc 24 a7 c9 25 ae 24
b5 c4 85 88 40 be c4 92 46 25 79 2f c4 af 25 f8 92 49
24 92 64 c9 92 49 30 b1 24 92 49 24 2c 49 24 92 49 0b
12 49 24 92 42 c4 92 49 24 92 49 ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff ff ff ff ...

Decoding Trie: 2560 bits

Image data: 1991464 bits

Huffman.java
compress()

42 4d 7a 00 10 00 00 00 00 00 7a 00 00 00 6c 00 00 00 00
02 00 00 00 02 00 00 01 00 20 00 03 00 00 00 00 00 10 00
12 0b 00 00 12 0b 00 00 00 00 00 00 00 00 00 00 00 00 ff
00 00 ff 00 00 ff 00 00 00 00 00 00 ff 01 00 00 00 00 00
00 00 00 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 01

00 ... Total: 8389584 bits

Total: 1994024 bits

Compression Model #2: Self-Extracting Bits

To keep things conceptually simpler, let’s package the compressed data plus
decoder into a single self-extracting .java file.

● Bitstream on the left generates bitstream on the right.

70 75 62 6c 69 63 20 63 6c 61 73 73 20 53 65 6c
66 45 78 74 72 61 63 74 69 6e 67 48 75 67 50 6c
61 6e 74 20 7b 0d 0a ... 74 68 65 20 70 61 73
73 63 6F 64 65 20 69 73 20 68 75 67 39 31 38 32
37 78 79 7A 2E 65 75 7a c0 09 eb cd d4 2a 55 9f
d8 98 d1 4e e7 97 56 58 68 0c 7a 43 dd 80 00 7b
11 58 f4 75 73 77 bc 26 01 e0 92 28 ef 47 24 66
9b de 8b 25 04 1f 0e 87 bd 87 9e 03 c9 f1 cf ad
fa 82 dc 9f a1 31 b5 79 13 9b 95 d5 63 26 8b 90
5e d5 b0 17 fb e9 c0 e6 53 c7 cb dd 5f 77 d3 bd
80 f9 b6 5e 94 aa 74 34 3a ... 00 20 00 f4 c3
b7 6d c2 31 24 92 dc 24 a7 c9 25 ae 24 b5 c4 85
88 40 be c4 92 46 25 79 2f c4 af 25 f8 92 49 24
92 64 c9 92 49 c4 92 49 24 92 49 ff ff ff ff ff
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ...

SelfExtractingHugPlant.java
42 4d 7a 00 10 00 00 00 00 00 7a 00 00 00 6c 00 00 00
00 02 00 00 00 02 00 00 01 00 20 00 03 00 00 00 00 00
10 00 12 0b 00 00 12 0b 00 00 00 00 00 00 00 00 00 00
00 00 ff 00 00 ff 00 00 ff 00 00 00 00 00 00 ff 01 00
00 00 00 00 00 00 00 00 00 00 01 00 00 00 00 00 00 00
00 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 01 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 ff ff ff ff
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff ff ff ff ff ff ff...

HugPlant.bmp

2,037,424 bits 8,389,584 bits

Compression Model #2: Self-Extracting Bits

As a model for the decompression process, let’s treat the algorithm and the
compressed bitstream as a single sequence of bits.

● We’ve now seen an example: SelfExtractingHugPlant.

Will discuss the implications of this model next time.

0111000001110101...

SelfExtractingHugPlant.java
Interpreter

8,389,584 bits

0100001001001101...

HugPlant.bmp

2,037,424 bits

Opening a .huf File

Of course, major operating systems have no idea what to do with a .huf file.

● Have to send over the 43,400 bits of Huffman.java code as well.
● Total size (including .java file): 2,037,424 bits.

This is an alternate justification for using compression model #2.

LZW Style Compression (Extra)

Thought Experiment

How might we compress the following bitstreams (underlines for emphasis
only)?

● B=”aababcabcdabcdeabcdefabcdefgabcdefgh”?
● B=”abababababababababababababababab”?
● B=”aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa”?

The LZW Approach

Key idea: Each codeword represents multiple symbols.

● Start with ‘trivial’ codeword table where each codeword corresponds to
one ASCII symbol.

● Every time a codeword X is used, record a new codeword Y corresponding
to X concatenated with the next symbol.

Demo Example: http://goo.gl/68Dncw

http://goo.gl/68Dncw

LZW

Named for inventors Limpel, Ziv, Welch.

● Related algorithm used as a component in many compression tools,
including .gif files, .zip files, and more.

● Once a hated algorithm because of attempts to enforce licensing fees.
Patent expired in 2003.

Our version in lecture is simplified, for example:

● Assumed inputs were ≤ 0x7f (7 bit input) and also provided 8 bit outputs
(real LZW can have variable length outputs).

● Didn’t say what happens when table is full (many variants exist).

LZW

Neat fact: You don’t have to send the codeword table along with the
compressed bitstream.

● Possible to reconstruct codeword table from C(B) alone.

LZW decompression example:

http://goo.gl/fdYU9C

http://goo.gl/fdYU9C

Lossy Compression (Extra)

Lossy Compression

Most media formats lose information during compression process:

● .JPEG images.
● .MP3 audio.
● .MP4 video.

Why?

● MP4 video: 1920 x 1080 pixels, 60 times per second, 24 bits per pixel: 0.37
gigabytes per second, 1,343 gigabytes per hour.

● Downloading a movie: 30 days at 1 MB/second.

Lossy Compression

Basic idea: Throw away information that human sensory system doesn’t care
about.

Examples:

● Audio: High frequencies.
● Video: Subtle gradations of color (low frequencies).

See EE20 (or perhaps 16A/16B?) for more.

Summary

Compression: Make common bitstreams more compact.

Huffman coding:

● Represents common symbols as codeword with fewer bits.
● Uses something like Map<Character, BitSeq> for compression.
● Uses something like TrieMap<Character> for decompression.

LZW:

● Represents multiple symbols with a single codeword.
● Uses something like TrieMap<Integer> for compression.
● Uses something like Map<Character, SymbolSeq> for decompression.

