
Welcome to Lecture 4:
Lists and Loops

1) Use Iclicker for attendance
2) Lecture Guide: tinyurl.com/S24CS10L4

3) Start at 10:10 (Berkeley Time)...but thank you for coming at 10!

http://tinyurl.com/S24CS10L2

Agenda / Topics

● L3 Review

● Intro to Lists

● Lists and Loops

● List Mutation

Lecture Guide: tinyurl.com/S24CS10L4

http://tinyurl.com/S24CS10L2

Announcements

● If you miss lecture, do the lecture quiz for attendance!

● Use Ed for questions

● Support Office Hours…
● Project 1 Due today

Lecture Guide: tinyurl.com/S24CS10L4

http://tinyurl.com/S24CS10L2

Review from Lecture 3 - Scope

● Global Variables

○ Global variables are declared outside of all functions.

○ Scope: They can be accessed and modified from any part of the program,

including inside functions.

● Local Variables (Script Variables)

○ Local variables are declared within a function.

○ Scope: They can only be accessed within the function where they are defined.

○ Cannot be accessed directly outside the function.

■ However, their values can be returned by the function and used elsewhere.

Saving a Local Variable outside a Function

● Return the value of a local
(script) variable outside the
function

● Save the return value in a
global variable

Iteration

● Iteration is a set of instructions that are executed repeatedly

● Here are some different iterative statements in Snap!

● All three of these iterative statements…
○ Will run everything inside of the loop and repeat it

○ Can be terminated early if a “report” block is called inside

Russian Nesting Dolls

Program
Variables

Conditionals

Functions

Loops
Lists

Intro to Lists

• A Data Structure that holds individual data types

• Text, Numbers, Booleans

• Lists of Lists (2D lists)--> future lecture

• Ordered collections of values

• Each item as a location/address in a list - called the “index”

Lecture Guide: tinyurl.com/S24CS10L4

http://tinyurl.com/S24CS10L2

Intro to Lists

● Color list:
[“red”, “blue”, “green”]

Imagine a spreadsheet column….

Index

List Indexes

● Like an address -> points to the memory cell the element is stored in

● Access a specific item in a list

Dynamic List→ Get Index from User

*In this example we see that the index of the list can be a dynamic value that comes from

the user.

LENGTH OF A LIST
● Length of a list = # items it contains

● Dynamically calculates length of list

○ If you add or remove an element, will adjust value automatically

● Built-in function - exists in most, if not all, modern programming languages

13

List with Random and Length of List

● Example: Magic 8 Ball

Lecture Guide: tinyurl.com/S24CS10L4

http://tinyurl.com/S24CS10L2

Questions?

Lists and Loops

● We can use loops to visit or manipulate every value in a list.

● A program can be written that uses a loop to deal with each thing in a list, no
matter how many things are in the list.

Lecture Guide: tinyurl.com/S24CS10L4

http://tinyurl.com/S24CS10L2

List Iteration - For Each

• Iteration is the process of repeating certain instructions in a computer
program.

• Lists are iterable: we can sequentially access (loop over) list items
one-by-one.

• You dont need “length of list” here

List Iteration - For “i” Loops

• Iteration is the process of repeating certain instructions in a computer
program.

• Lists are iterable: we can sequentially access (loop over) list items
one-by-one.

WHAT WOULD SNAP! SAY?

1
9

Lecture Guide: tinyurl.com/S24CS10L4

http://tinyurl.com/S24CS10L2

WHAT WOULD SNAP! SAY?

A. Red, Blue, Green

B. 1, 2, 3
2
0

• Notice: the “i”
represents the index
position within the
color

• You need to add it
inside the “item of
block” to access the
list

WHAT WOULD SNAP! SAY?

2
1

• Notice: the “i”
represents the index
position within the
color

• You need to add it
inside the “item of
block” to access the
list

Task: Multiply all Items in a list by 2

● Create a list of numbers

● Use a loop to return a new list with all the values multiplied by 2

● Hint:

○ Use a script variable to make and return a new list

List MUTABILITY

● In Snap!, there are four main blocks that allow us to mutate lists:

Add

*Default is to add the new entry to the end of the list

Task: Filter Out 0s in a number list

● Create a list of numbers (with lots of

0’s)

○ Ex: [0, 0, 0, 1, 2, 3, 4, 0, 0, 0, 5, 6]

● Use a Loop (your choice) to return a

list without 0’s

● Hint: to make a list with non-0s, use

○ A script variable

○ the add function

Lecture Guide: tinyurl.com/S24CS10L4

http://tinyurl.com/S24CS10L2
http://www.youtube.com/watch?v=iHdviZkM7S4

Functions: Saving Return Value in a Global Variable

Delete

Insert

● Adds element at a specific index position
● Pushes anything behind the new element back by 1 index position

Task: Use “Replace” to Pluralize Colors

● Instead of having colors = [“Red”, “Blue”, “Green”]
I’d like to have colors = [“Reds”, “Blues”, “Greens”]

● How can we do this?

● Use a loop and the “replace” and “join”

http://www.youtube.com/watch?v=4xG2aJa6UyY

Task: Pluralizing Colors

● Instead of having colors = [“Red”, “Blue”, “Green”]
I’d like to have colors = [“Reds”, “Blues”, “Greens”]

TASK: PLURALIZING `COLORS`

• Notice: by replacing each original item with its plural form, I’ve actually
changed the contents of the `Colors` list.

• Lists are mutable: the contents of a list can change (mutate) over time.

• Programs that alter the contents of a mutable object are called
destructive.

Lecture Guide: tinyurl.com/S24CS10L4

http://tinyurl.com/S24CS10L2

NON-DESTRUCTIVELY PLURALIZING `COLORS`

● What if instead of changing colors, I want to create a new list called
`Plurals`, with the colors pluralized?

● Can use the for each block! -> return a different list

`Colors` remains unchanged!

Functions: Passing Lists as an argument

*Demo

Functions: Passing Lists as an argument

Functions: Saving Return Value in a Global Variable

Lab 4 Preview

● No Workbook

● 6 Challenges

○ Block 1: add all numbers from num1: _ to num2: _

○ Block 2: report only even numbers from list: _

○ Block 3: add start num: _ until > than stop num: _ and is odd

■ Cannot use “For Each” and “For i” blocks

○ Block 4: is num: _ prime?

○ Block 5: report only prime numbers from list: _

○ Block 6: report the duplicates in list: _

Task: prepend every list item with “good”

● Prepend = add to the front

Example 1: Access a list item using index

Write a function named prepend_good that prepends

the string “good ” to every element of the list.

Note: You may assume that every element of the

passed list is a string.

Note: You may assume that your function will

always be called with a list, however, you may not

assume that that list is not empty.

example input:

list = ['dog', 'cat']

example function call: print(prepend_good(list))

def prepend_good(my_list):

 result = []

 for item in my_list:

 new_str = f"good {item}"

 result.append(new_str)

