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What is it about?

Our Question:

What makes Annealed Score Matching 
(diffusion model) so successful? 

Specifically, why is Annealed Score Matching so 
much better than Vanilla Score Matching?

Our Approach:

We tackle this question from the perspective of 
asymptotic sample complexity. 

We show that for multimodal distributions, the 
sample complexity of annealed score matching 
is polynomial in problem parameters.

The previous known bound is exponential for 
vanilla score matching (KHR 2022).
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Score Matching

[H2005] Score Matching objective

[L2012] Generalized Score Matching objective 
replaces the gradient with an arbitrary linear 
operator

[SE2019] Annealed Score Matching objective

is a weighted sum of score matching objectives 
at different temperatures beta, with each 
distribution tempered with different amount of 
noise.

Annealing process (Image Credit: Yang Song’s blog)
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Asymptotic Sample Complexity

[V2000] Under suitable conditions, the empirical 
estimator converges to the following asymptotic 
normal distribution by an extension to the 
Central Limit Theorem

Interpretation:

The “larger” the asymptotic covariance, the 
more sample is required to ensure the estimator 
is sufficiently close to the true parameter.

We will use the operator norm of the asymptotic 
covariance to quantify the sample complexity.
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Multimodality via Markov Chain

Intuition:

The multimodality of a distribution could be 
characterized by the mixing time of a Markov 
Chain (e.g. Langevin Dynamics) that converges 
to the distribution as its stationary distribution. 
For multimodal distributions, the chain suffers 
from slow mixing.

[Definition 3] Markov Semigroup of a Markov Process

[Definition 4] Infinitesimal Generator

[Definition 5] Poincaré constant is defined as the rate of 
convergence (i.e. mixing time) in chi-square divergence

Equivalently, it is the smallest C that satisfies the 
Poincaré Inequality for all g

where the Dirichlet form is given by
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Framework for Statistical Gap

Poincaré constant 

with generator  

Asymptotic covariance 

of Generalized Score 

Optimal efficiency 

via Cramer-Rao
Smoothness

We extend the results from KHR (2022) for exponential family: Under conditions (asymptotic normality, 
realizability) the operator norm of the asymptotic covariance of the Generalized Score Matching objective 
can be upper bounded by the following bound (Informal Theorem 3)
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Framework for Statistical Gap

Poincaré constant 

with generator  

Asymptotic covariance 

of Generalized Score 

Optimal efficiency 

via Cramer-Rao
Smoothness

We extend the results from KHR (2022) for exponential family: Under conditions (asymptotic normality, 
realizability) the operator norm of the asymptotic covariance of the Generalized Score Matching objective 
can be upper bounded by the following bound (Informal Theorem 3)

For a Markov Chain with some generator, its mixing time 
determines the sample complexity of a corresponding SM 
objective.
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Generalized Score and Markov Chains 

For a Markov Chain with some generator, its 
mixing time determines the sample complexity 
of a corresponding SM objective.

[Theorem 3] For every continuous time Markov 
Chain, the corresponding SM objective is in fact 
a pre-conditioned score loss:

Key ingredients:

[MCF 2015] For every continuous time Markov 
Chain with stationary distribution, it admits the 
following Ito’s diffusion representation:

where D is PSD, Q is skew-symmetric, and

[Lemma 3] The above Markov Chain has the 
following Dirichlet form:

which is closely related to the Hessian of the loss.
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KHR (2022): Vanilla Score Matching - slow mixing

Asymptotic covariance 

of Generalized Score 

Optimal efficiency 

via Cramer-Rao
Smoothness

[Example 2 from KHR (2022).] For an 
exponential family distribution  with sufficient 
statistic

The multiplicative gap is exponential w.r.t. a.

Poincaré constant 

with generator  

Exponential w.r.t. 

mode distance
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Ours: Annealed Score Matching - fast mixing

Asymptotic covariance 

of Generalized Score 

Optimal efficiency 

via Cramer-Rao
Polynomial Polynomial

1. Annealed Score Matching (especially higher order) objective is very similar to Score 
Matching on an “lifted” state space augmented with temperature. We analyze Score 
Matching on this “lifted” space.

2. Under a Gaussian Mixture distribution (with shared covariance), the Score Matching 
loss (that arises from tempering dynamics) enjoys a poly(dimension, diameter of 
means, eigenvalues of covariance) bound under its natural parameterization.
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Polynomial mixing time bound:

- Langevin Dynamics on the “lifted” (x, beta) 
distribution corresponds to an Annealed 
Score Matching loss.

- Mixing time analysis uses Markov Chain 
Decomposition Theorem GLR (2018).

Proof Outline

Asymptotic covariance 

of Generalized Score 
Polynomial

Optimal efficiency 

via Cramer-Rao
Polynomial

Polynomial Smoothness bound:

- Relate score of mixture with score of 
component via the convexity of 
perspective map.

- Single Gaussian derivative is given by the 
Hermite polynomial.
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Continuously Tempered Langevin Dynamics

[Definition 7] We define Continuous Tempered 
Langevin Dynamics as the Langevin Dynamics 
over the joint (x, beta) state space, with 
reflection at the boundary of support of beta.

where

and 

[Proposition 4] The Score Matching loss on the 
joint state space satisfies

Moreover,

Annealed 
SM

Higher 
order SM

SM on 
lifted dist.
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Lifted distribution 

beta

x

ix: original state space

beta: temperature

i: mode index
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[Lemma 7] In our mixture 
analysis, this is polynomial

beta

x

i

Fast Mixing within mode  across temperatures 

*VROOM VROOM*
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beta

x

i

*VROOM VROOM*
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analysis, this is polynomial

Fast Mixing within mode  across temperatures 
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[Lemma 8] In our mixture 
analysis, this is polynomial

Fast Mixing across modes    at high temperature

beta

x

The projected chain on i 
becomes a random walk 

on complete graph 
*VROOM VROOM*

i
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The overall Poincaré constant is 
bounded by the two Poincaré 
constants.

[Theorem 4] In our mixture 
analysis, this is polynomial

Putting it all together

beta

x

i
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Takeaways

1. Sample complexity of score matching is 
governed by mixing time of Markov 
Chains. Given a (continuous time) Markov 
Chain, we can design score matching loss 
with different sample complexities.

2. Annealed score matching loss 
corresponds to Langevin Dynamics over 
the lifted (x, beta) distribution, which mixes 
much faster than Langevin on the original 
distribution over x.
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Thank you!
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