
1

Programming Languages and
Compilers (CS 421)

Talia Ringer (they/them)
4218 SC, UIUC
https://courses.grainger.illinois.edu/cs421/fa2023/

Based heavily on slides by Elsa Gunter, which were
based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

https://courses.grainger.illinois.edu/cs421/fa2023/

* 2

Objectives for Today

■ Reminder: We want to turn strings (code) into
computer instructions

■ Done in phases
■ Turn strings into abstract syntax trees (parse)
■ Translate abstract syntax trees into executable

instructions (interpret or compile)
■ Thursday, we showed much of parsing, including

how to use a parser generator
■ Today we will learn the algorithm beneath the

generated parser

* 3

Objectives for Today (TODO update)

■ Reminder: We want to turn strings (code) into
computer instructions

■ Done in phases
■ Turn strings into abstract syntax trees (parse)
■ Translate abstract syntax trees into executable

instructions (interpret or compile)
■ Thursday, we showed much of parsing, including

how to use a parser generator
■ Today we will learn the algorithm beneath the

generated parser

4

 Questions from last week?

5

 Reminder: Implementing Parsers

* 6

Example - Base types

(* File: expr.ml *)
type expr =
 | Term_as_Expr of term
 | Plus_Expr of (term * expr)
 | Minus_Expr of (term * expr)
and term =
 | Factor_as_Term of factor
 | Mult_Term of (factor * term)
 | Div_Term of (factor * term)
and factor =
 | Id_as_Factor of string
 | Parenthesized_Expr_as_Factor of expr

Implementing Parsers

* 7

Example - Lexer (exprlex.mll)

{ (*open Exprparse*) }
let numeric = ['0' - '9']
let letter =['a' - 'z' 'A' - 'Z']
rule token = parse
 | "+" {Plus_token}
 | "-" {Minus_token}
 | "*" {Times_token}
 | "/" {Divide_token}
 | "(" {Left_parenthesis}
 | ")" {Right_parenthesis}
 | letter (letter|numeric|"_")* as id {Id_token id}
 | [' ' '\t' '\n'] {token lexbuf}
 | eof {EOL}

Implementing Parsers

* 8

Example - Parser (exprparse.mly)

%{ open Expr
%}
%token <string> Id_token
%token Left_parenthesis Right_parenthesis
%token Times_token Divide_token
%token Plus_token Minus_token
%token EOL
%start main
%type <expr> main
%%

Implementing Parsers

* 9

Example - Parser (exprparse.mly)

expr:
 | term { Term_as_Expr $1 }
 | term Plus_token expr { Plus_Expr ($1, $3) }
 | term Minus_token expr { Minus_Expr ($1, $3) }
term:
 | factor { Factor_as_Term $1 }
 | factor Times_token term { Mult_Term ($1, $3) }
 | factor Divide_token term { Div_Term ($1, $3) }

Implementing Parsers

* 10

Example - Parser (exprparse.mly)

factor:
 | Id_token { Id_as_Factor $1 }
 | Left_parenthesis expr Right_parenthesis

{Parenthesized_Expr_as_Factor $2 }
main:
 | expr EOL { $1 }

Implementing Parsers

* 11

Example - Using Parser

#use "expr.ml";;
…
#use "exprparse.ml";;
…
#use "exprlex.ml";;
…
let test s =
 let lexbuf = Lexing.from_string (s^"\n") in
 main token lexbuf;;

Implementing Parsers

* 12

Example - Using Parser

test "a + b";;
- : expr =
Plus_Expr
 (Factor_as_Term
 (Id_as_Factor "a"),
 Term_as_Expr
 (Factor_as_Term (Id_as_Factor "b")))

Implementing Parsers

* 13

Example - Using Parser

test "a + b";;
- : expr =
Plus_Expr
 (Factor_as_Term
 (Id_as_Factor "a"),
 Term_as_Expr
 (Factor_as_Term (Id_as_Factor "b")))

Implementing Parsers

How did the parser generator actually generate something that
parses input strings like this, given the grammar we provided?

14

 The Parsing Algorithm

* 15

LR Parsing

■ Read tokens left to right (L)
■ Create a rightmost derivation (R)
■ How is this possible?

■ Start at the bottom (left) and work your way up
■ Last step has only one non-terminal to be

replaced, so is rightmost
■ Working backwards, replace mixed strings by

non-terminals
■ Always proceed so that there are no non-terminals

to the right of the string to be replaced

Parsing Algorithm

* 16

LR Parsing

■ Read tokens left to right (L)
■ Create a rightmost derivation (R)
■ How is this possible?

■ Start at the bottom (left) and work your way up
■ Last step has only one non-terminal to be

replaced, so is rightmost
■ Working backwards, replace mixed strings by

non-terminals
■ Always proceed so that there are no non-terminals

to the right of the string to be replaced

Parsing Algorithm

* 17

LR Parsing

■ Read tokens left to right (L)
■ Create a rightmost derivation (R)
■ How is this possible?

■ Start at the bottom (left) and work your way up
■ Last step has only one non-terminal to be

replaced, so is rightmost
■ Working backwards, replace mixed strings by

non-terminals
■ Always proceed so that there are no non-terminals

to the right of the string to be replaced

Parsing Algorithm

* 18

LR Parsing

■ Read tokens left to right (L)
■ Create a rightmost derivation (R)
■ How is this possible?

■ Start at the bottom (left) and work your way up
■ Last step has only one non-terminal to be

replaced, so is rightmost
■ Working backwards, replace mixed strings by

non-terminals
■ Always proceed so that there are no non-terminals

to the right of the string to be replaced

Parsing Algorithm

* 19

LR Parsing

■ Read tokens left to right (L)
■ Create a rightmost derivation (R)
■ How is this possible?

■ Start at the bottom (left) and work your way up
■ Last step has only one non-terminal to be

replaced, so is rightmost
■ Working backwards, replace mixed strings by

non-terminals
■ Always proceed so that there are no non-terminals

to the right of the string to be replaced

Parsing Algorithm

* 20

LR Parsing

■ Read tokens left to right (L)
■ Create a rightmost derivation (R)
■ How is this possible?

■ Start at the bottom (left) and work your way up
■ Last step has only one non-terminal to be

replaced, so is rightmost
■ Working backwards, replace mixed strings by

non-terminals
■ Always proceed so that there are no non-terminals

to the right of the string to be replaced

Parsing Algorithm

21

 More Details Later

22

 LR Parsing Example

23

Example: Sums of 0s and 1s

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

Problem: How can we derive (0 + 1) + 0 : <Sum>?

LR Parsing Example

24

Example: Sums of 0s and 1s

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

Problem: How can we derive (0 + 1) + 0 : <Sum>?

Work from the bottom up

LR Parsing Example

* 25

<Sum>  =>

 =  (0 + 1) + 0

Work from the bottom up

Example: Sums of 0s and 1s

LR Parsing Example

* 26

<Sum>  =>

 = ( 0 + 1) + 0 shift
 =  (0 + 1) + 0 shift

Example: Sums of 0s and 1s

Work from the bottom up

LR Parsing Example

* 27

<Sum>  =>

 => (0  + 1) + 0 reduce
 = ( 0 + 1) + 0 shift
 =  (0 + 1) + 0 shift

Example: Sums of 0s and 1s

LR Parsing Example

* 28

<Sum>  =>

 => (0  + 1) + 0 reduce
 = ( 0 + 1) + 0 shift
 =  (0 + 1) + 0 shift

Example: Sums of 0s and 1s

Now we want to replace

LR Parsing Example

* 29

<Sum>  =>

 = (<Sum>  + 1) + 0 shift
 => (0  + 1) + 0 reduce
 = ( 0 + 1) + 0 shift
 =  (0 + 1) + 0 shift

Example: Sums of 0s and 1s

LR Parsing Example

* 30

<Sum>  =>

 = (<Sum>  + 1) + 0 shift
 => (0  + 1) + 0 reduce
 = ( 0 + 1) + 0 shift
 =  (0 + 1) + 0 shift

Example: Sums of 0s and 1s

Keep working up

LR Parsing Example

* 31

<Sum>  =>

 (<Sum> +  1) + 0
 = (<Sum>  + 1) + 0 shift shift
 => (0  + 1) + 0 reduce
 = ( 0 + 1) + 0 shift
 =  (0 + 1) + 0 shift

Example: Sums of 0s and 1s

Keep working up

LR Parsing Example

* 32

<Sum>  =>

 => (<Sum> + 1 ) + 0
 = (<Sum> +  1) + 0 shift
 = (<Sum>  + 1) + 0 shift shift
 => (0  + 1) + 0 reduce
 = ( 0 + 1) + 0 shift
 =  (0 + 1) + 0 shift

Example: Sums of 0s and 1s

LR Parsing Example

* 33

<Sum>  =>

 => (<Sum> + 1 ) + 0
 = (<Sum> +  1) + 0 shift
 = (<Sum>  + 1) + 0 shift shift
 => (0  + 1) + 0 reduce
 = ( 0 + 1) + 0 shift
 =  (0 + 1) + 0 shift

Example: Sums of 0s and 1s

Now what?

LR Parsing Example

* 34

<Sum>  =>

 => (<Sum> + <Sum> ) + 0
 => (<Sum> + 1 ) + 0 reduce
 = (<Sum> +  1) + 0 shift
 = (<Sum>  + 1) + 0 shift shift
 => (0  + 1) + 0 reduce
 = ( 0 + 1) + 0 shift
 =  (0 + 1) + 0 shift

Example: Sums of 0s and 1s

LR Parsing Example

* 35

<Sum>  =>

 = (<Sum> ) + 0 shift
 => (<Sum> + <Sum> ) + 0 reduce
 => (<Sum> + 1 ) + 0 reduce
 = (<Sum> +  1) + 0 shift
 = (<Sum>  + 1) + 0 shift shift
 => (0  + 1) + 0 reduce
 = ( 0 + 1) + 0 shift
 =  (0 + 1) + 0 shift

Example: Sums of 0s and 1s

LR Parsing Example

* 36

<Sum>  =>

 => (<Sum>)  + 0
 = (<Sum> ) + 0 shift
 => (<Sum> + <Sum> ) + 0 reduce
 => (<Sum> + 1 ) + 0 reduce
 = (<Sum> +  1) + 0 shift
 = (<Sum>  + 1) + 0 shift shift
 => (0  + 1) + 0 reduce
 = ( 0 + 1) + 0 shift
 =  (0 + 1) + 0 shift

Example: Sums of 0s and 1s

LR Parsing Example

* 37

<Sum>  =>

 = <Sum>  + 0
 => (<Sum>)  + 0 reduce
 = (<Sum> ) + 0 shift
 => (<Sum> + <Sum> ) + 0 reduce
 => (<Sum> + 1 ) + 0 reduce
 = (<Sum> +  1) + 0 shift
 = (<Sum>  + 1) + 0 shift shift
 => (0  + 1) + 0 reduce
 = ( 0 + 1) + 0 shift
 =  (0 + 1) + 0 shift

Example: Sums of 0s and 1s

LR Parsing Example

* 38

<Sum>  =>

 = <Sum> +  0
 = <Sum>  + 0 shift
 => (<Sum>)  + 0 reduce
 = (<Sum> ) + 0 shift
 => (<Sum> + <Sum> ) + 0 reduce
 => (<Sum> + 1 ) + 0 reduce
 = (<Sum> +  1) + 0 shift
 = (<Sum>  + 1) + 0 shift shift
 => (0  + 1) + 0 reduce
 = ( 0 + 1) + 0 shift
 =  (0 + 1) + 0 shift

Example: Sums of 0s and 1s

LR Parsing Example

* 39

<Sum>  =>
 => <Sum> + 0 
 = <Sum> +  0 shift
 = <Sum>  + 0 shift
 => (<Sum>)  + 0 reduce
 = (<Sum> ) + 0 shift
 => (<Sum> + <Sum> ) + 0 reduce
 => (<Sum> + 1 ) + 0 reduce
 = (<Sum> +  1) + 0 shift
 = (<Sum>  + 1) + 0 shift shift
 => (0  + 1) + 0 reduce
 = ( 0 + 1) + 0 shift
 =  (0 + 1) + 0 shift

Example: Sums of 0s and 1s

LR Parsing Example

* 40

<Sum>  => <Sum> + <Sum > 
 => <Sum> + 0  reduce
 = <Sum> +  0 shift
 = <Sum>  + 0 shift
 => (<Sum>)  + 0 reduce
 = (<Sum> ) + 0 shift
 => (<Sum> + <Sum> ) + 0 reduce
 => (<Sum> + 1 ) + 0 reduce
 = (<Sum> +  1) + 0 shift
 = (<Sum>  + 1) + 0 shift shift
 => (0  + 1) + 0 reduce
 = ( 0 + 1) + 0 shift
 =  (0 + 1) + 0 shift

Example: Sums of 0s and 1s

LR Parsing Example

* 41

<Sum>  => <Sum> + <Sum >  reduce
 => <Sum> + 0  reduce
 = <Sum> +  0 shift
 = <Sum>  + 0 shift
 => (<Sum>)  + 0 reduce
 = (<Sum> ) + 0 shift
 => (<Sum> + <Sum> ) + 0 reduce
 => (<Sum> + 1 ) + 0 reduce
 = (<Sum> +  1) + 0 shift
 = (<Sum>  + 1) + 0 shift shift
 => (0  + 1) + 0 reduce
 = ( 0 + 1) + 0 shift
 =  (0 + 1) + 0 shift

Example: Sums of 0s and 1s

LR Parsing Example

* 42

<Sum>  => <Sum> + <Sum >  reduce
 => <Sum> + 0  reduce
 = <Sum> +  0 shift
 = <Sum>  + 0 shift
 => (<Sum>)  + 0 reduce
 = (<Sum> ) + 0 shift
 => (<Sum> + <Sum> ) + 0 reduce
 => (<Sum> + 1 ) + 0 reduce
 = (<Sum> +  1) + 0 shift
 = (<Sum>  + 1) + 0 shift shift
 => (0  + 1) + 0 reduce
 = ( 0 + 1) + 0 shift
 =  (0 + 1) + 0 shift

Example: Sums of 0s and 1s

LR Parsing Example

43

 Questions so far?

LR Parsing Example

44

 Building the Parse Tree

LR Parsing Example

* 45

 (0 + 1) + 0

Example: Sums of 0s and 1s

LR Parsing Example

* 46

 (0 + 1) + 0

Example: Sums of 0s and 1s

LR Parsing Example

* 47

 (0 + 1) + 0

Example: Sums of 0s and 1s

LR Parsing Example

* 48

 <Sum>

 (0 + 1) + 0

Example: Sums of 0s and 1s

LR Parsing Example

* 49

 <Sum>

 (0 + 1) + 0

Example: Sums of 0s and 1s

LR Parsing Example

* 50

 <Sum>

 (0 + 1) + 0

Example: Sums of 0s and 1s

LR Parsing Example

* 51

 <Sum>
 <Sum>

 (0 + 1) + 0

Example: Sums of 0s and 1s

LR Parsing Example

* 52

 <Sum>
 <Sum>
 <Sum>

 (0 + 1) + 0

Example: Sums of 0s and 1s

LR Parsing Example

* 53

 <Sum>
 <Sum>
 <Sum>

 (0 + 1) + 0

Example: Sums of 0s and 1s

LR Parsing Example

* 54

Example

 <Sum>
 <Sum>
 <Sum>
 <Sum>

 (0 + 1) + 0

LR Parsing Example

* 55

Example

 <Sum>
 <Sum>
 <Sum>
 <Sum>

 (0 + 1) + 0

LR Parsing Example

* 56

Example

 <Sum>
 <Sum>
 <Sum>
 <Sum>

 (0 + 1) + 0

LR Parsing Example

* 57

Example

 <Sum>
 <Sum>
 <Sum>
 <Sum>
 <Sum>

 (0 + 1) + 0

LR Parsing Example

* 58

Example

 <Sum>
 <Sum>
 <Sum>
 <Sum>
 <Sum>
 <Sum>

 (0 + 1) + 0

LR Parsing Example

* 59

Example

 <Sum>
 <Sum>
 <Sum>
 <Sum>
 <Sum>
 <Sum>

 (0 + 1) + 0

LR Parsing Example

60

 Questions so far?

61

 How LR Parsing Works

* 62

LR Parsing Tables

■ Build a pair of tables, Action and Goto, from the
grammar
■ This is the hardest part; we omit here
■ Rows labeled by states
■ For Action, columns labeled by terminals and

“end-of-tokens” marker (more generally strings
of terminals of fixed length)

■ For Goto, columns labeled by non-terminals

LR Parsing Details

* 63

LR Parsing Tables

■ Build a pair of tables, Action and Goto, from the
grammar
■ This is the hardest part; we omit here
■ Rows labeled by states
■ For Action, columns labeled by terminals and

“end-of-tokens” marker (more generally strings
of terminals of fixed length)

■ For Goto, columns labeled by non-terminals

LR Parsing Details

* 64

Action and Goto Tables

■ Given a state and the next input, Action table says
either
■ shift and go to state n, or
■ reduce by production k (explained in a bit)
■ accept or error

■ Given a state and a non-terminal, Goto table says
■ go to state m

LR Parsing Details

* 65

Action and Goto Tables

■ Given a state and the next input, Action table says
either
■ shift and go to state n, or
■ reduce by production k (explained in a bit)
■ accept or error

■ Given a state and a non-terminal, Goto table says
■ go to state m

LR Parsing Details

* 66

LR(i) Parsing Algorithm

■ Based on push-down automata
■ Uses states and transitions (as recorded in

Action and Goto tables)

■ Uses a stack containing states, terminals and
non-terminals

LR Parsing Details

* 67

LR(i) Parsing Algorithm

0. Ensure token stream ends in special
“end-of-tokens” symbol

1. Start in state 1 with an empty stack
2. Push state(1) onto stack
3. Look at next i tokens from token stream (toks)

(don’t remove yet)
4. If top symbol on stack is state(n), look up

action in Action table at (n, toks)

LR Parsing Details

* 68

LR(i) Parsing Algorithm

0. Ensure token stream ends in special
“end-of-tokens” symbol

1. Start in state 1 with an empty stack
2. Push state(1) onto stack
3. Look at next i tokens from token stream (toks)

(don’t remove yet)
4. If top symbol on stack is state(n), look up

action in Action table at (n, toks)

LR Parsing Details

* 69

LR(i) Parsing Algorithm

0. Ensure token stream ends in special
“end-of-tokens” symbol

1. Start in state 1 with an empty stack
2. Push state(1) onto stack
3. Look at next i tokens from token stream (toks)

(don’t remove yet)
4. If top symbol on stack is state(n), look up

action in Action table at (n, toks)

LR Parsing Details

* 70

LR(i) Parsing Algorithm

0. Ensure token stream ends in special
“end-of-tokens” symbol

1. Start in state 1 with an empty stack
2. Push state(1) onto stack
3. Look at next i tokens from token stream (toks)

(don’t remove yet)
4. If top symbol on stack is state(n), look up

action in Action table at (n, toks)

LR Parsing Details

* 71

LR(i) Parsing Algorithm

0. Ensure token stream ends in special
“end-of-tokens” symbol

1. Start in state 1 with an empty stack
2. Push state(1) onto stack
3. Look at next i tokens from token stream (toks)

(don’t remove yet)
4. If top symbol on stack is state(n), look up

action in Action table at (n, toks)

LR Parsing Details

* 72

LR(i) Parsing Algorithm

5. If action = shift m,
a) Remove the top token from token stream

and push it onto the stack
b) Push state(m) onto stack
c) Go back to step 3

LR Parsing Details

* 73

LR(i) Parsing Algorithm

6. If action = reduce k where production k is E ::= u
a) Remove 2 * length(u) symbols from stack

(u and all the interleaved states)
b) If new top symbol on stack is state(m), look

up new state p in Goto(m,E)
c) Push E onto the stack, then push state(p)

onto the stack
d) Go to step 3

LR Parsing Details

* 74

LR(i) Parsing Algorithm

7. If action = accept
■ Stop parsing, return success

8. If action = error,
■ Stop parsing, return failure

LR Parsing Details

* 75

Adding Synthesized Attributes

■ AKA building the actual parse tree with the
values it stores

■ Add to each reduce a rule for calculating the new
synthesized attribute from the component
attributes

■ Add to each nonterminal pushed onto the stack,
the attribute calculated for it

■ When performing a reduce,
■ gather the recorded attributes from each

nonterminal popped from stack
■ Compute new attribute for nonterminal pushed

onto stack
LR Parsing Details

* 76

Adding Synthesized Attributes

■ AKA building the actual parse tree with the
values it stores

■ Add to each reduce a rule for calculating the new
synthesized attribute from the component
attributes

■ Add to each nonterminal pushed onto the stack,
the attribute calculated for it

■ When performing a reduce,
■ gather the recorded attributes from each

nonterminal popped from stack
■ Compute new attribute for nonterminal pushed

onto stack
LR Parsing Details

77

 Questions so far?

78

 Dealing with Ambiguity

* 79

Shift-Reduce Conflicts

■ Problem: can’t decide whether the action for a
state and input character should be shift or
reduce

■ Caused by ambiguity in grammar

■ Usually caused by lack of associativity or
precedence information in grammar

Ambiguity and LR Parsing

* 80

Example: Sums of 0s and 1s

  0 + 1 + 0 shift
 -> 0  + 1 + 0 reduce
 -> <Sum>  + 1 + 0 shift
 -> <Sum> +  1 + 0 shift
 -> <Sum> + 1  + 0 reduce
 -> <Sum> + <Sum>  + 0

Ambiguity and LR Parsing

* 81

Example: Sums of 0s and 1s

  0 + 1 + 0 shift
 -> 0  + 1 + 0 reduce
 -> <Sum>  + 1 + 0 shift
 -> <Sum> +  1 + 0 shift
 -> <Sum> + 1  + 0 reduce
 -> <Sum> + <Sum>  + 0

Ambiguity and LR Parsing

* 82

Example: Sums of 0s and 1s

  0 + 1 + 0 shift
 -> 0  + 1 + 0 reduce
 -> <Sum>  + 1 + 0 shift
 -> <Sum> +  1 + 0 shift
 -> <Sum> + 1  + 0 reduce
 -> <Sum> + <Sum>  + 0

Ambiguity and LR Parsing

* 83

Example: Sums of 0s and 1s

  0 + 1 + 0 shift
 -> 0  + 1 + 0 reduce
 -> <Sum>  + 1 + 0 shift
 -> <Sum> +  1 + 0 shift
 -> <Sum> + 1  + 0 reduce
 -> <Sum> + <Sum>  + 0

Ambiguity and LR Parsing

* 84

Example: Sums of 0s and 1s

  0 + 1 + 0 shift
 -> 0  + 1 + 0 reduce
 -> <Sum>  + 1 + 0 shift
 -> <Sum> +  1 + 0 shift
 -> <Sum> + 1  + 0 reduce
 -> <Sum> + <Sum>  + 0

Ambiguity and LR Parsing

* 85

Example: Sums of 0s and 1s

  0 + 1 + 0 shift
 -> 0  + 1 + 0 reduce
 -> <Sum>  + 1 + 0 shift
 -> <Sum> +  1 + 0 shift
 -> <Sum> + 1  + 0 reduce
 -> <Sum> + <Sum>  + 0

Ambiguity and LR Parsing

* 86

Example: Sums of 0s and 1s

  0 + 1 + 0 shift
 -> 0  + 1 + 0 reduce
 -> <Sum>  + 1 + 0 shift
 -> <Sum> +  1 + 0 shift
 -> <Sum> + 1  + 0 reduce
 -> <Sum> + <Sum>  + 0

Ambiguity and LR Parsing

Do we shift or reduce?
We could do either.

* 87

Example: Sums of 0s and 1s

  0 + 1 + 0 shift
 -> 0  + 1 + 0 reduce
 -> <Sum>  + 1 + 0 shift
 -> <Sum> +  1 + 0 shift
 -> <Sum> + 1  + 0 reduce
 -> <Sum> + <Sum>  + 0

Ambiguity and LR Parsing

Shift first - right associative
Reduce first - left associative

* 88

Reduce - Reduce Conflicts
■ Problem: can’t decide between two different

rules to reduce by
■ Again caused by ambiguity in grammar
■ Symptom: RHS of one production suffix of

another
■ Requires examining grammar and rewriting it
■ Harder to solve than shift-reduce errors

Ambiguity and LR Parsing

* 89

Example

S ::= A | aB
A ::= abc
B ::= bc

  abc shift
 a  bc shift
 ab  c shift
 abc 

Ambiguity and LR Parsing

* 90

Example

S ::= A | aB
A ::= abc
B ::= bc

  abc shift
 a  bc shift
 ab  c shift
 abc 

Ambiguity and LR Parsing

* 91

Example

S ::= A | aB
A ::= abc
B ::= bc

  abc shift
 a  bc shift
 ab  c shift
 abc 

Ambiguity and LR Parsing

* 92

Example

S ::= A | aB
A ::= abc
B ::= bc

  abc shift
 a  bc shift
 ab  c shift
 abc 

Ambiguity and LR Parsing

* 93

Example

S ::= A | aB
A ::= abc
B ::= bc

  abc shift
 a  bc shift
 ab  c shift
 abc 

Ambiguity and LR Parsing

Which rule to reduce by?

* 94

Example

S ::= A | aB
A ::= abc
B ::= bc

  abc shift
 a  bc shift
 ab  c shift
 abc 

Ambiguity and LR Parsing

Which rule to reduce by?

* 95

Example

S ::= A | aB
A ::= abc
B ::= bc

  abc shift
 a  bc shift
 ab  c shift
 abc 

Ambiguity and LR Parsing

Which rule to reduce by?

96

 Questions?

97

 Extra time?
 Disambiguate <Sum>again, then run
 algorithm by hand on some strings to
 get shift/reduce sequences.

98

 Next Class: More Disambiguation

Next Class

99

■ WA8 due next Thursday
■ MP9 due next Tuesday
■ Please sign up with CBTF for Midterm 3
■ All deadlines can be found on course website
■ Use office hours and class forums for help

