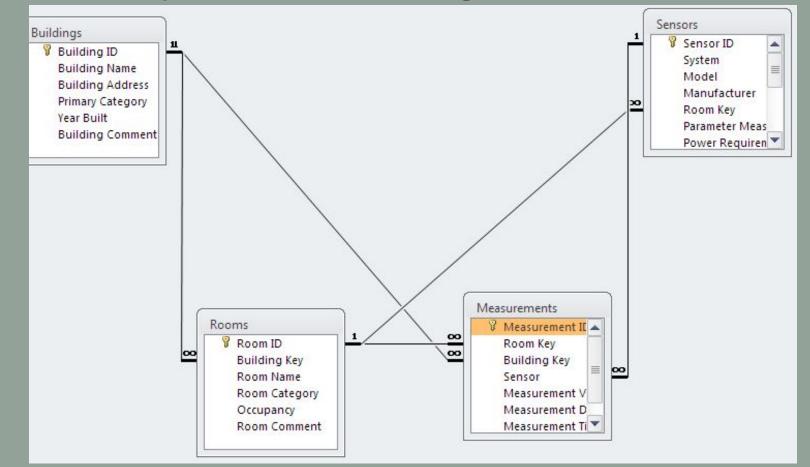
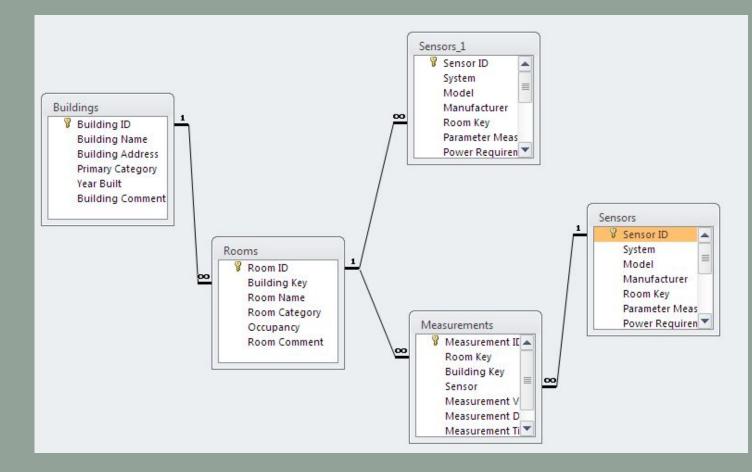
DATABASES

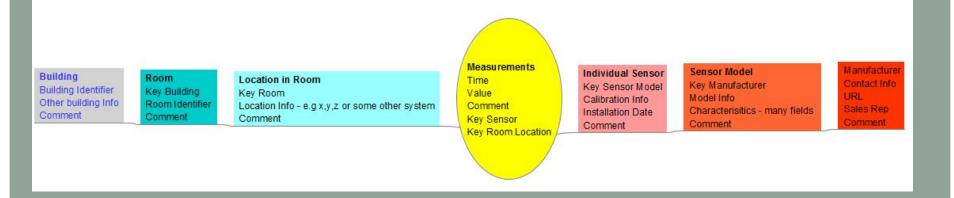

TRICKS & THEORY

LET'S LOOK AT THE <u>Resources DB</u>

This is what I created from the info a previous year's students put on the web.


HAZARDS OF RELATIONS

What's the problem with this Diagram?


FIXING IT

Add a second instance of a single table

A PRETTY GOOD SET OF TABLES

Here's a view (using Freemind) of a set of tables that might do a good job for real building measurementsIt's easy to see that we could go on adding tables

RELATIONAL DB LIMITATIONS

It's difficult to make changes

- Changing table relationships can be a nightmare
 This means that to do a good job
- Defining the goals is critical
 - What you'll store
 - How you want to get it out
 - All the different ways
- Planning the entire DB follows from that need
- This leads to other kinds of databases
- More later

SQL

What is SQL?

Structured Query Language
 Why do We Need It

• Same standards issues as for BIM – now mostly solved

Client Access to hosted DB

• It's the standard way to address DBs

It hides in Access as we'll see

WHAT IT DOES FOR A DB

Create

- Tables
- Queries
- Add to
- Forms
- Update
- Special Queries
- **Extract from**
- Queries
- Reports

THE HEART OF RDB - <u>SQL Joins</u>

Inner Join

- The most common
- What you're creating in your databases
- An Example From Wikipedia

The Tables

Employee table		Department table		
LastName	DepartmentID	DepartmentID	DepartmentName	
Rafferty	31	31	Sales	
Jones	33	33	Engineering	
Steinberg	33	34	Clerical	
Robinson	34	35	Marketing	
Smith	34		•	
John	NULL			

Inner Join - Leaves out John

IDEmployee 👻	LastName 🝷	employee.D -	department -	Department -
1	Rafferty	31	31	Sales
2	Jones	33	33	Engineering
3	Steinberg	33	33	Engineering
4	Robinson	34	34	Clerical
5	Smith	34	34	Clerical
(New)				

THE HEART OF RDB - <u>SQL Joins</u>

Inner Join

- The most common
- What you're creating in your databases

An Example – From Wikipedia

The Tables

Employee table		Department table		
LastName	DepartmentID	DepartmentID	DepartmentName	
Rafferty	31	31	Sales	
Jones	33	33	Engineering	
Steinberg	33	34	Clerical	
Robinson	34	35	Marketing	
Smith	34		•	
John	NULL			

SELECT * FROM employee INNER JOIN department ON employee.DepartmentID = department.DepartmentID;

Inner Join - Leaves out John

IDEmployee	LastName -	employee.D -	department -	Department -
	1 Rafferty	31	31	Sales
	2 Jones	33	33	Engineering
	3 Steinberg	33	33	Engineering
	4 Robinson	34	34	Clerical
	5 Smith	34	34	Clerical
(New)			

OUTER JOIN

Seldom used

- May create it by mistake
- All rows from a single table with info from other table if it exists
 - Will show a row even if not linked to other table
 - e.g In this same example John is included w/o dept.

SELECT *

FROM employee LEFT JOIN department ON employee.DepartmentID = department.DepartmentID;

IDEmployee 👻	LastName -	employee.D -	department +	Department +
6	John			
1	Rafferty	31	31	Sales
2	Jones	33	33	Engineering
3	Steinberg	33	33	Engineering
4	Robinson	34	34	Clerical
5	Smith	34	34	Clerical
(New)				

CARTESIAN JOIN

Almost certainly a big mistake All permutations of all rows of both table Here's what we get with these same two tables

> SELECT * FROM employee, department;

IDEmployee	*	LastName 👻	employee.D -	department -	Department -
	1	Rafferty	31	31	Sales
	1	Rafferty	31	33	Engineering
	1	Rafferty	31	34	Clerical
	1	Rafferty	31	35	Marketing
	2	Jones	33	31	Sales
	2	Jones	33	33	Engineering
	2	Jones	33	34	Clerical
	2	Jones	33	35	Marketing
	3	Steinberg	33	31	Sales
	3	Steinberg	33	33	Engineering
	3	Steinberg	33	34	Clerical
	3	Steinberg	33	35	Marketing
	4	Robinson	34	31	Sales
	4	Robinson	34	33	Engineering
	4	Robinson	34	34	Clerical
	4	Robinson	34	35	Marketing
	5	Smith	34	31	Sales
	5	Smith	34	33	Engineering
	5	Smith	34	34	Clerical
	5	Smith	34	35	Marketing
	6	John		31	Sales
	6	John		33	Engineering
	6	John		34	Clerical
	6	John		35	Marketing

TRICKS OF USING ACCESS

Plan, Plan, Plan - It's hard to change

Test with simple version to be sure basics work - then add Check the relationships carefully

Use Autonumber

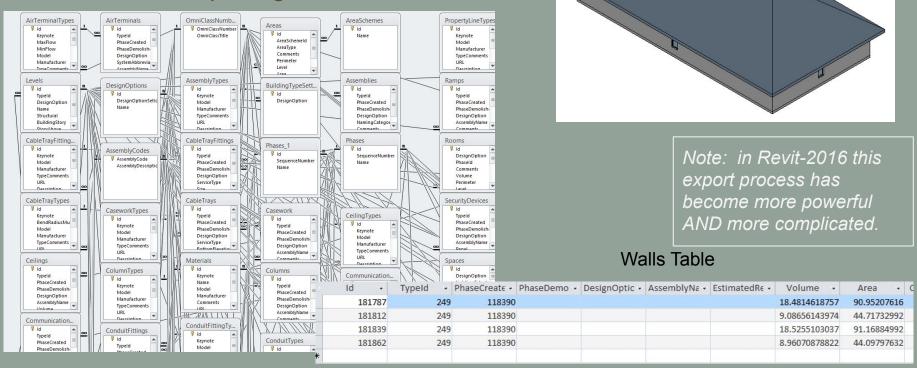
- Don't worry about the value of the number the user should never see them
- If you don't, then be sure you have a UNIQUE primary key Establish a consistent naming System
 Document what you do

It's easy to build a documentation table
 Learn about Dropdown Boxes
 Use separate table for each set of lists
 Use Queries rather than lists when working

OTHER TYPES OF DB

Flat File

Excel – yes it works as a database, particularly with Vlookup
 Object Oriented


• Much more easily modified

It's aimed at situations such as we run into with BIM
 Big data - NoSQL

- Yes, it means that it doesn't fully obey SQL rules
- Amazon, Google, Facebook use this approach

LET'S LOOK AT WHAT REVIT PRODUCES

In Revit a very simple building Can Export as Database This is what get as a piece of the relationship Diagram

