Lecture 14 (Data Structures 1)

## **Disjoint Sets**

CS61B, Fall 2024 @ UC Berkeley

Slides credit: Josh Hug





## **Disjoint Sets API**

Lecture 14, CS61B, Fall 2024

## Introduction to Disjoint Sets

- Disjoint Sets API
- Tracking Connected
   Components

Implementations

- List of Sets
- Quick Find
- Quick Union
- Weighted Quick Union
- WQU with Path Compression



Next couple of weeks: Deriving classic solutions to interesting problems, with an emphasis on how sets, maps, and priority queues are implemented.

Today: Deriving the "Disjoint Sets" data structure for solving the "Dynamic Connectivity" problem. We will see:

- How a data structure design can evolve from basic to sophisticated.
- How our choice of underlying abstraction can affect asymptotic runtime (using our formal Big-Theta notation) and code complexity.





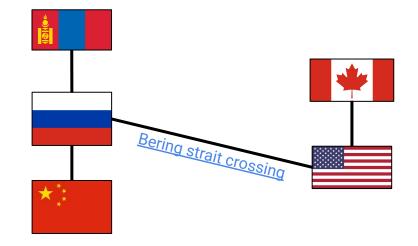
## The Disjoint Sets Data Structure

The Disjoint Sets data structure has two operations:

- connect(x, y): Connects x and y.
- isConnected(x, y): Returns true if x and y are connected. Connections can be transitive, i.e. they don't need to be direct.

Example:

- connect(Russia, China)
- connect(Russia, Mongolia)
- isConnected(China, Mongolia)? true
- connect(USA, Canada)
- isConnected(USA, Mongolia)? false
- connect(Russia, USA)
- isConnected(USA, Mongolia)? true





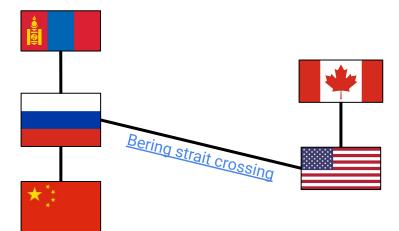
## The Disjoint Sets Data Structure

The Disjoint Sets data structure has two operations:

- connect(x, y): Connects x and y.
- isConnected(x, y): Returns true if x and y are connected. Connections can be transitive, i.e. they don't need to be direct.

Useful for many purposes, e.g.:

- Percolation theory:
  - Computational chemistry.
- Implementation of other algorithms:
  - Kruskal's algorithm.

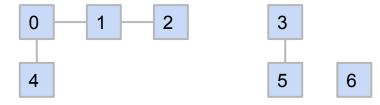


"Another major challenge is that there is nothing on either side of the Bering Strait to connect the bridge to."



- Force all items to be integers instead of arbitrary data (e.g. 8 instead of USA).
- Declare the number of items in advance, everything is disconnected at start.

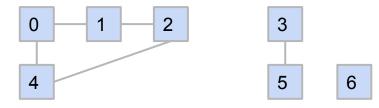
```
ds = DisjointSets(7)
ds.connect(0, 1)
ds.connect(1, 2)
ds.connect(0, 4)
ds.connect(3, 5)
ds.isConnected(2, 4): true
ds.isConnected(3, 0): false
```





- Force all items to be integers instead of arbitrary data (e.g. 8 instead of USA).
- Declare the number of items in advance, everything is disconnected at start.

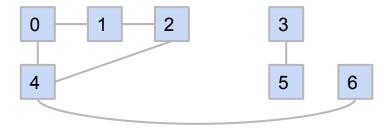
```
ds = DisjointSets(7)
ds.connect(0, 1)
ds.connect(1, 2)
ds.connect(0, 4)
ds.connect(3, 5)
ds.isConnected(2, 4): true
ds.isConnected(3, 0): false
ds.connect(4, 2)
```





- Force all items to be integers instead of arbitrary data (e.g. 8 instead of USA).
- Declare the number of items in advance, everything is disconnected at start.

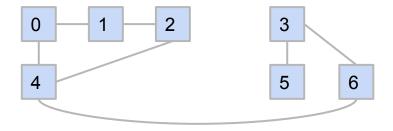
```
ds = DisjointSets(7)
ds.connect(0, 1)
ds.connect(1, 2)
ds.connect(0, 4)
ds.connect(3, 5)
ds.isConnected(2, 4): true
ds.isConnected(3, 0): false
ds.connect(4, 2)
ds.connect(4, 6)
```





- Force all items to be integers instead of arbitrary data (e.g. 8 instead of USA).
- Declare the number of items in advance, everything is disconnected at start.

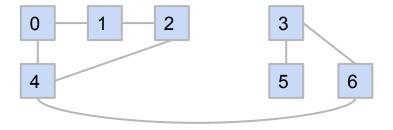
```
ds = DisjointSets(7)
ds.connect(0, 1)
ds.connect(1, 2)
ds.connect(0, 4)
ds.connect(3, 5)
ds.isConnected(2, 4): true
ds.isConnected(3, 0): false
ds.connect(4, 2)
ds.connect(4, 6)
ds.connect(3, 6)
```





- Force all items to be integers instead of arbitrary data (e.g. 8 instead of USA).
- Declare the number of items in advance, everything is disconnected at start.

```
ds = DisjointSets(7)
ds.connect(0, 1)
ds.connect(1, 2)
ds.connect(0, 4)
ds.connect(3, 5)
ds.isConnected(2, 4): true
ds.isConnected(3, 0): false
ds.connect(4, 2)
ds.connect(4, 6)
ds.connect(3, 6)
ds.isConnected(3, 0): true
```



```
public interface DisjointSets {
    /** Connects two items P and Q. */
    void connect(int p, int q);
    /** Checks to see if two items are connected. */
    boolean isConnected(int p, int q);
}
```

Goal: Design an efficient DisjointSets implementation.

- Number of elements N can be huge.
- Number of method calls M can be huge.
- Calls to methods may be interspersed (e.g. can't assume it's only connect operations followed by only isConnected operations).

```
— connect(int p, int q)
— isConnected(int p, int q)
```

# Tracking Connected Components

Lecture 14, CS61B, Fall 2024

## **Introduction to Disjoint Sets**

- Disjoint Sets API
- Tracking Connected
   Components

Implementations

- List of Sets
- Quick Find
- Quick Union
- Weighted Quick Union
- WQU with Path Compression



## The Naive Approach

Naive approach:

- Connecting two things: Record every single connecting line in some data structure.
- Checking connectedness: Do some sort of (??) iteration over the lines to see if one thing can be reached from the other.





#### A Better Approach: Connected Components

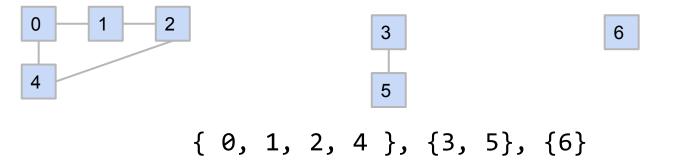
Rather than manually writing out every single connecting line, only record the sets that each item belongs to.

 $\{0\}, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}$  $\{0, 1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}$ connect(0, 1) $\{0, 1, 2\}, \{3\}, \{4\}, \{5\}, \{6\}$ connect(1, 2) $\{0, 1, 2, 4\}, \{3\}, \{5\}, \{6\}$ connect(0, 4) $\{0, 1, 2, 4\}, \{3, 5\}, \{6\}$ connect(3, 5)isConnected(2, 4): true isConnected(3, 0): false  $\{0, 1, 2, 4\}, \{3, 5\}, \{6\}$ connect(4, 2) $\{0, 1, 2, 4, 6\}, \{3, 5\}$ connect(4, 6)  $\{0, 1, 2, 3, 4, 5, 6\}$ connect(3, 6)isConnected(3, 0): true

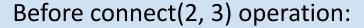


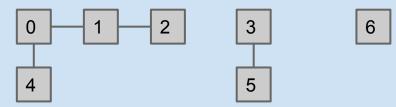
For each item, its *connected component* is the set of all items that are connected to that item.

- Naive approach: Record every single connecting line somehow.
- Better approach: Model connectedness in terms of sets.
  - How things are connected isn't something we need to know.
  - Only need to keep track of which connected component each item belongs to.

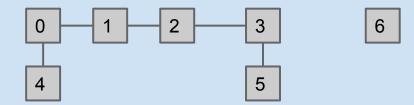


Up next: We'll consider how to do track set membership in Java.





After connect(2, 3) operation:



## $\{0, 1, 2, 4\}, \{3, 5\}, \{6\}$

 $\{0, 1, 2, 4, 3, 5\}, \{6\}$ 

Assume elements are numbered from 0 to N-1.



# **List of Sets**

## Lecture 14, CS61B, Fall 2024

Introduction to Disjoint Sets

- Disjoint Sets API
- Tracking Connected
   Components

## Implementations

- List of Sets
- Quick Find
- Quick Union
- Weighted Quick Union
- WQU with Path Compression



## **Challenge: Pick Data Structures to Support Tracking of Sets**



{ 0, 1, 2, 4 }, {3, 5}, {6} { 0, 1, 2, 4, 3, 5}, {6} Idea #1: List of sets of integers, e.g. [{0, 1, 2, 4}, {3, 5}, {6}]

- In Java: List<Set<Integer>>.
- Very intuitive idea, but actually terrible!



## If nothing is connected:



Idea #1: List of sets of integers, e.g. [{0}, {1}, {2}, {3}, {4}, {5}, {6}]

- In Java: List<Set<Integer>>.
- Very intuitive idea, but actually **terrible**!
- Requires iterating through all the sets to find anything. Complicated and slow!
  - Worst case: If nothing is connected, then isConnected(5, 6) requires iterating through N-1 sets to find 5, then N sets to find 6. Overall runtime of  $\Theta(N)$ .



# QuickFind

## Lecture 14, CS61B, Fall 2024

Introduction to Disjoint Sets

- Disjoint Sets API
- Tracking Connected
- Components

## Implementations

- List of Sets
- Quick Find
- Quick Union
- Weighted Quick Union
- WQU with Path Compression



| Implementation | constructor | connect | isConnected              |
|----------------|-------------|---------|--------------------------|
| ListOfSetsDS   | Θ(N)        | O(N)    | O(N)                     |
|                | /           |         | Moret ecce is $O(N)$ but |

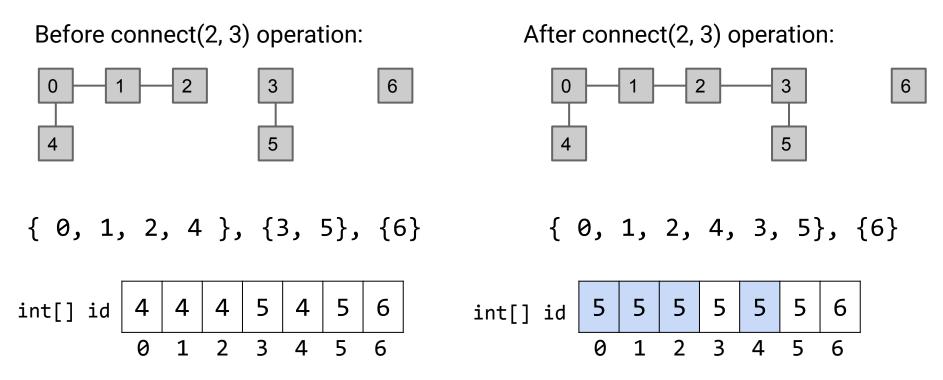
Constructor's runtime has order of growth N no matter what, so  $\Theta(N)$ .

ListOfSetsDS is *complicated* and slow.

Worst case is Θ(N), but other cases may be better. We'll say O(N) since O means "less than or equal".

- Operations are linear when number of connections are small.
  - Have to iterate over all sets.
- Important point: By deciding to use a List of Sets, we have doomed ourselves to complexity and bad performance.





Idea #2: list of integers where ith entry gives set number (a.k.a. "id") of item i.

connect(p, q): Change entries that equal id[p] to id[q]

#### QuickFindDS

```
public class QuickFindDS implements DisjointSets {
      private int[] id;
                                                    Very fast: Two array accesses: \Theta(1)
      public boolean isConnected(int p, int q) {
           return id[p] == id[q];
      }
                                               Relatively slow: N+2 to 2N+2 array accesses: \Theta(N)
      public void connect(int p, int q) {
           int pid = id[p];
                                                      public QuickFindDS(int N) {
           int qid = id[q];
                                                          id = new int[N];
           for (int i = 0; i < id.length; i++) {</pre>
                                                          for (int i = 0; i < N; i++)</pre>
               if (id[i] == pid) {
                                                               id[i] = -1;
                    id[i] = qid;
                                                      }
           }...
```

| Implementation | constructor | connect | isConnected |
|----------------|-------------|---------|-------------|
| ListOfSetsDS   | Θ(N)        | O(N)    | O(N)        |
| QuickFindDS    | Θ(N)        | Θ(N)    | Θ(1)        |

QuickFindDS is too slow for practical use: Connecting two items takes N time.

• Instead, let's try something more radical.



# **Quick Union**

Lecture 14, CS61B, Fall 2024

Introduction to Disjoint Sets

- Disjoint Sets API
- Tracking Connected
   Components

## Implementations

- List of Sets
- Quick Find
- Quick Union
- Weighted Quick Union
- WQU with Path Compression



 $\Theta$ 

Approach zero: Represent everything as boxes and lines. Overly complicated.



ListOfSets: Represent everything as connected components. Represented connected components as list of sets of integers.

QuickFind: Represent everything as connected components. Represented connected components as a list of integers, where value = id.

$$\{0, 1, 2, 4\}, \{3, 5\}, \{6\} \longrightarrow [2, 2, 2, 3, 2, 3, 6]$$
  
int[]

QuickFind: Represent everything as connected components. Represented connected components as a list of integers where value = id.

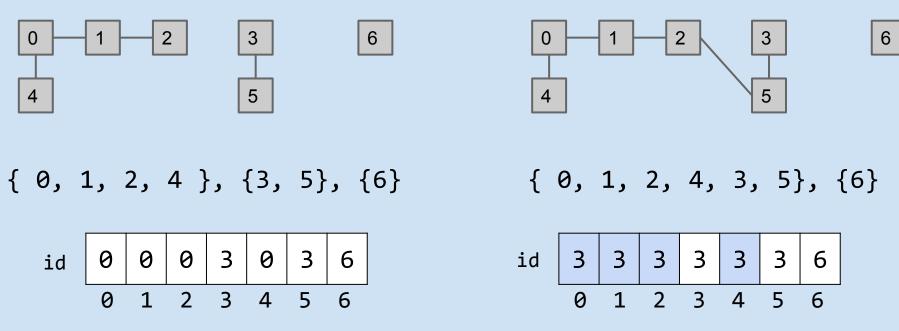
• Bad feature: Connecting two sets is slow!

$$\{0, 1, 2, 4\}, \{3, 5\}, \{6\} \longrightarrow [2, 2, 2, 3, 2, 3, 6]$$
  
int[]

Next approach (QuickUnion): We will still represent everything as connected components, and we will still represent connected components as a list of integers. However, values will be chosen so that connect is fast.

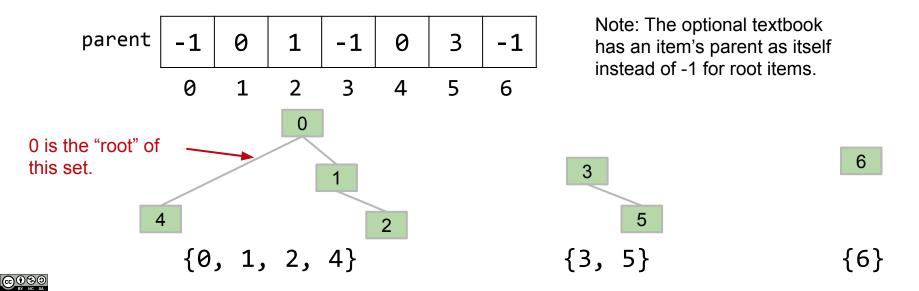


Hard question: How could we change our set representation so that combining two sets into their union requires changing **one** value?



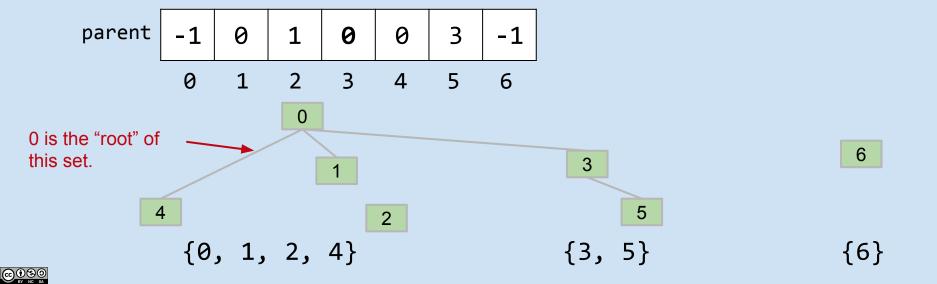
Hard question: How could we change our set representation so that combining two sets into their union requires changing **one** value?

- Idea: Assign each item a parent (instead of an id). Results in a tree-like shape.
  - An innocuous sounding, seemingly arbitrary solution.
  - Unlocks a pretty amazing universe of math that we won't discuss.



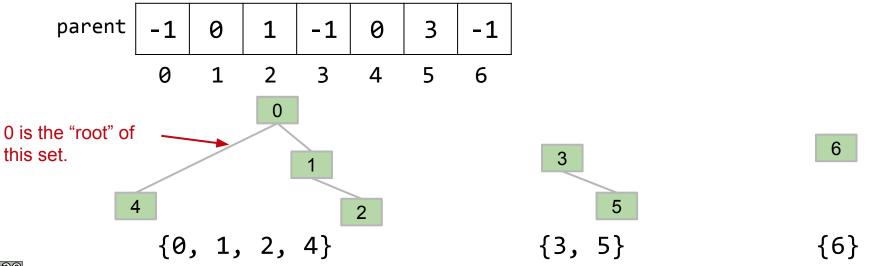
## connect(5, 2)

- How should we change the parent list to handle this connect operation?
  - If you're not sure where to start, consider: why can't we just set id[5] to 2?



connect(5, 2)

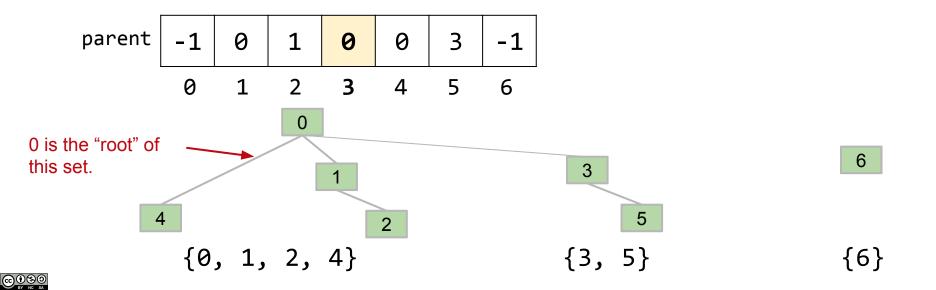
- Find root(5). // returns 3
- Find root(2). // returns 0
- Set root(5)'s value equal to root(2).





connect(5, 2)

- Find root(5). // returns 3
- Find root(2). // returns 0
- Set root(5)'s value equal to root(2).



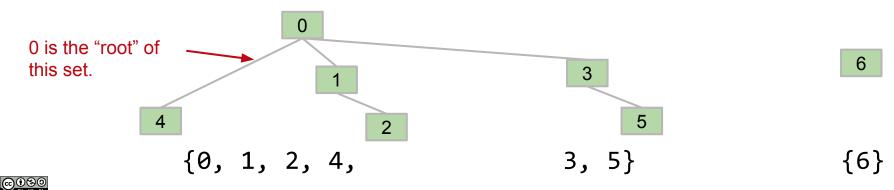
#### Set Union Using Rooted-Tree Representation

connect(5, 2)

• Make root(5) into a child of root(2).

What are the potential performance issues with this approach?

• Compared to QuickFind, we have to climb up a tree.



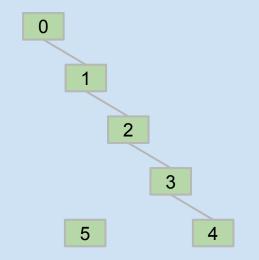
#### **The Worst Case**

If we always connect the first item's tree below the second item's tree, we can end up with a tree of height M after M operations:

- connect(4, 3)
- connect(3, 2)
- connect(2, 1)
- connect(1, 0)

For N items, what's the worst case runtime...

- For connect(p, q)?
- For isConnected(p, q)?





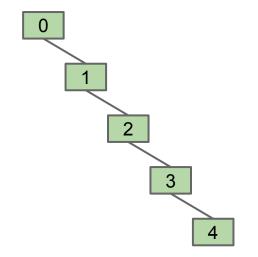
### The Worst Case

If we always connect the first item's tree below the second item's tree, we can end up with a tree of height M after M operations:

- connect(4, 3)
- connect(3, 2)
- connect(2, 1)
- connect(1, 0)

For N items, what's the worst case runtime...

- For connect(p, q)?  $\Theta(N)$
- For isConnected(p, q)?  $\Theta(N)$





#### QuickUnionDS

```
public class QuickUnionDS implements DisjointSets {
    private int[] parent;
    public QuickUnionDS(int N) {
        parent = new int[N];
        for (int i = 0; i < N; i++)</pre>
          \{ parent[i] = -1; \}
                                       For N items, this means a worst case runtime of \Theta(N).
    private int find(int p) {
                                    public boolean isConnected(int p, int q) {
                                         return find(p) == find(q);
        int r = p;
        while (parent[r] >= 0)
                                    }
           \{ r = parent[r]; \}
        return r;
                                    public void connect(int p, int q) {
                                         int i = find(p);
                                         int j = find(q);
```

parent[i] = j;

Here the find operation is the same as the "root(x)" idea we had in earlier slides.



| Implementation | Constructor | connect | isConnected |
|----------------|-------------|---------|-------------|
| ListOfSetsDS   | Θ(N)        | O(N)    | O(N)        |
| QuickFindDS    | Θ(N)        | Θ(N)    | Θ(1)        |
| QuickUnionDS   | Θ(N)        | O(N)    | O(N)        |

Using O because runtime can be between constant and linear.

QuickFindDS defect: QuickFindDS is too slow: Connecting takes  $\Theta(N)$  time.

QuickUnion defect: Trees can get tall. Results in potentially even worse performance than QuickFind if tree is imbalanced.

• Observation: Things would be fine if we just kept our tree balanced.



# Weighted Quick Union

## Lecture 14, CS61B, Fall 2024

Introduction to Disjoint Sets

- Disjoint Sets API
- Tracking Connected
   Components

## Implementations

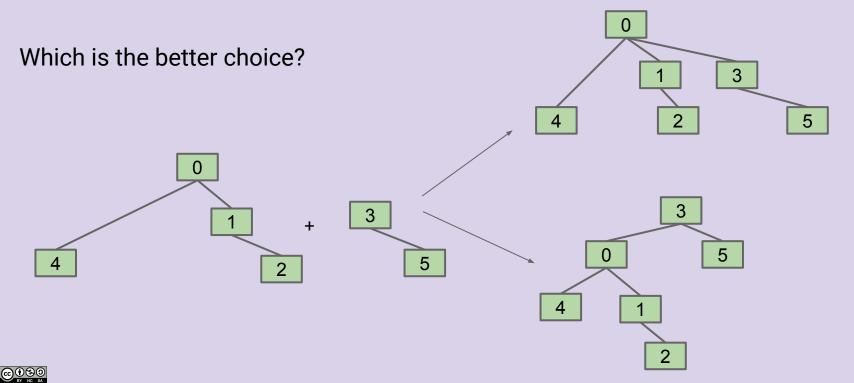
- List of Sets
- Quick Find
- Quick Union
- Weighted Quick Union
- WQU with Path Compression



#### A Choice of Two Roots

Suppose we are trying to connect(2, 5). We have two choices:

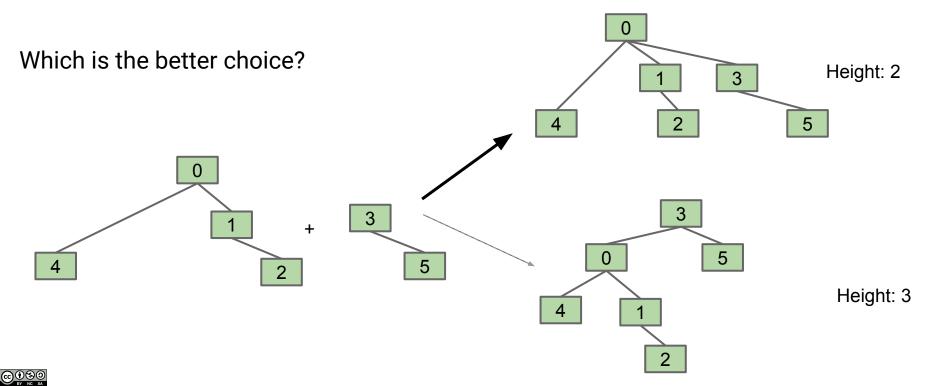
- A. Make 5's root into a child of 2's root.
- B. Make 2's root into a child of 5's root.



#### A Choice of Two Roots

Suppose we are trying to connect(2, 5). We have two choices:

- A. Make 5's root into a child of 2's root.
- B. Make 2's root into a child of 5's root.



#### **Possible Approach**

One possible approach is to keep track of the height of every tree.

- Link up shorter tree below the larger tree.
- In case of a tie, break tie arbitrarily.

Unfortunately, tracking tree height is kind of annoying.

Interestingly, tracking the tree's "size", a.k.a. "weight" works just as well asymptotically.

• Size and weight both mean the total number of items in that tree.



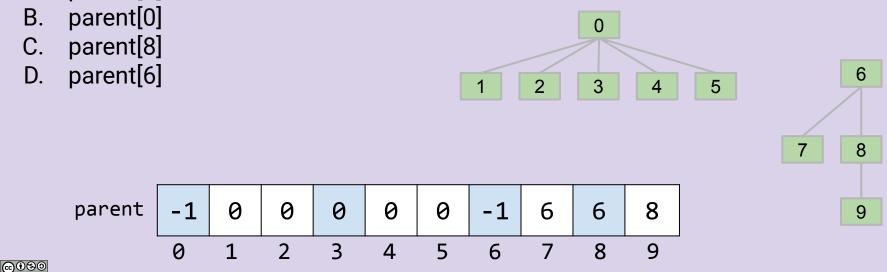
### Weighted QuickUnion

Modify quick-union to avoid tall trees.

- Track tree size (number of elements).
- New rule: Always link root of *smaller* tree to larger tree.

New rule: If we call connect(3, 8), which entry (or entries) of parent[] changes?

A. parent[3]



#### Improvement #1: Weighted QuickUnion

Modify quick-union to avoid tall trees.

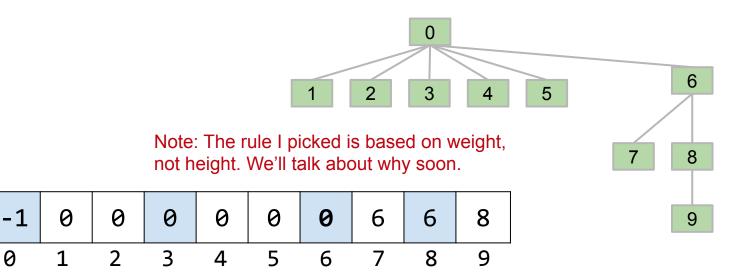
- Track tree size (**number** of elements).
- New rule: Always link root of *smaller* tree to larger tree.

New rule: If we call connect(3, 8), which entry (or entries) of parent[] changes?

- parent[3] Α.
- B parent[0]
- parent[8] C.
- parent[6] D.

parent

0





Minimal changes needed:

- Use parent[] array as before.
- isConnected(int p, int q) requires no changes.
- connect(int p, int q) needs to somehow keep track of sizes.
  - See the **Disjoint Sets lab** for the full details.
  - Two common approaches:
    - Replace -1 with -weight for roots (top approach).
    - Create a separate size array (bottom approach).



| Ν | Н |
|---|---|
| 1 | 0 |



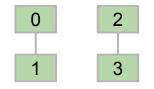


| N | Н |
|---|---|
| 1 | 0 |
| 2 | 1 |



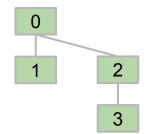


| Ν | Н |
|---|---|
| 1 | 0 |
| 2 | 1 |



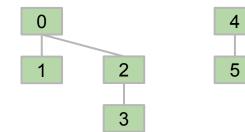


| Ν | Н |
|---|---|
| 1 | 0 |
| 2 | 1 |
| 4 | 2 |





| N | Н |
|---|---|
| 1 | 0 |
| 2 | 1 |
| 4 | 2 |

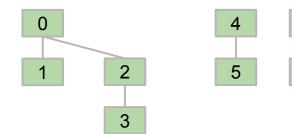




Let's consider the worst case where the tree height grows as fast as possible.

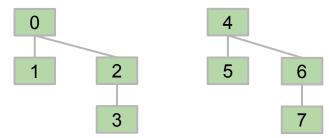
6

| N | Н |
|---|---|
| 1 | 0 |
| 2 | 1 |
| 4 | 2 |



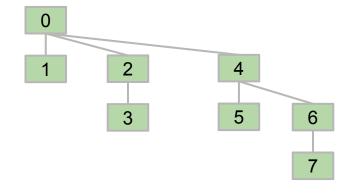


| N | Н |
|---|---|
| 1 | 0 |
| 2 | 1 |
| 4 | 2 |





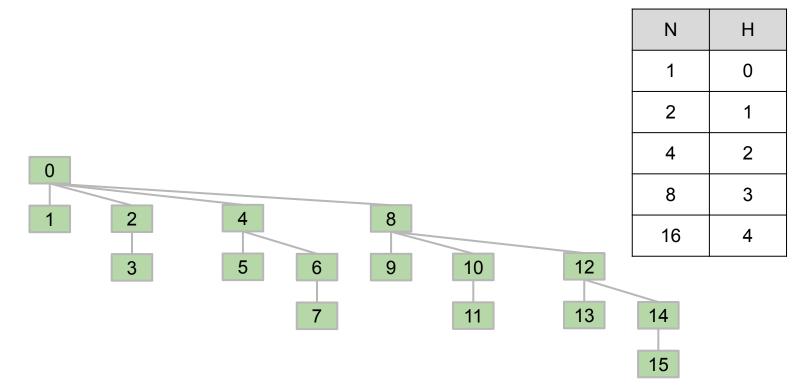
| N | Н |
|---|---|
| 1 | 0 |
| 2 | 1 |
| 4 | 2 |
| 8 | 3 |





Let's consider the worst case where the tree height grows as fast as possible.

• Worst case tree height is Θ(log N).



| Implementation       | Constructor | connect  | isConnected |
|----------------------|-------------|----------|-------------|
| ListOfSetsDS         | Θ(N)        | O(N)     | O(N)        |
| QuickFindDS          | Θ(N)        | Θ(N)     | Θ(1)        |
| QuickUnionDS         | Θ(N)        | O(N)     | O(N)        |
| WeightedQuickUnionDS | Θ(N)        | O(log N) | O(log N)    |

QuickUnion's runtimes are O(H), and WeightedQuickUnionDS height is given by H = O(log N). Therefore connect and isConnected are both O(log N).

By tweaking QuickUnionDS we've achieved logarithmic time performance.

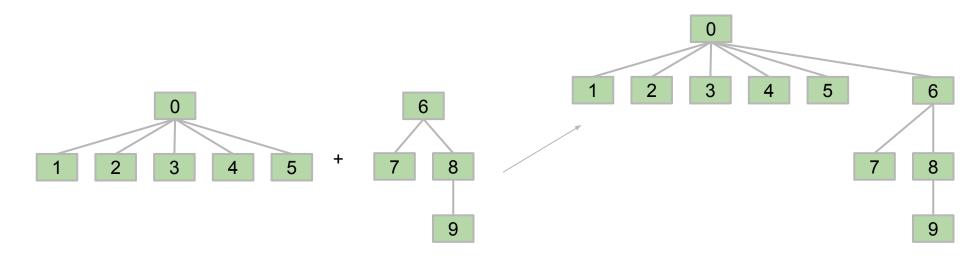
• Fast enough for all practical problems.



### Why Weights Instead of Heights?

We used the number of items in a tree to decide upon the root.

- Why not use the height of the tree?
  - Worst case performance for HeightedQuickUnionDS is asymptotically the same! Both are  $\Theta(\log(N))$ .
  - Resulting code is more complicated with no performance gain.





# WQU with Path Compression

Lecture 14, CS61B, Fall 2024

Introduction to Disjoint Sets

- Disjoint Sets API
- Tracking Connected
   Components

## Implementations

- List of Sets
- Quick Find
- Quick Union
- Weighted Quick Union
- WQU with Path Compression



| Implementation       | Constructor | connect  | isConnected |
|----------------------|-------------|----------|-------------|
| ListOfSetsDS         | Θ(N)        | O(N)     | O(N)        |
| WeightedQuickUnionDS | Θ(N)        | O(log N) | O(log N)    |

Performing M operations on a DisjointSet object with N elements:

O(N) cost for constructor.

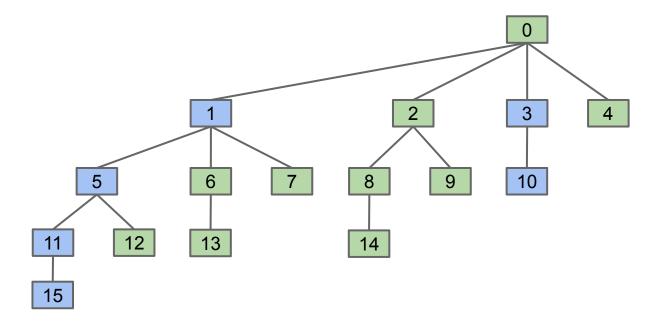
- For our naive implementation, runtime is O(N + MN) or just O(MN).
- For our best implementation, runtime is O(N + M log N).
- For N =  $10^9$  and M =  $10^9$ , difference is 30 years vs. 6 seconds.
  - Key point: Good data structure unlocks solutions to problems that could otherwise not be solved!
- Good enough for all practical uses, but could we theoretically do better?



Below is the topology of the worst case if we use WeightedQuickUnion.

Clever idea: When we do isConnected(15, 10), tie all nodes seen to the root.

• Additional cost is insignificant (same order of growth).

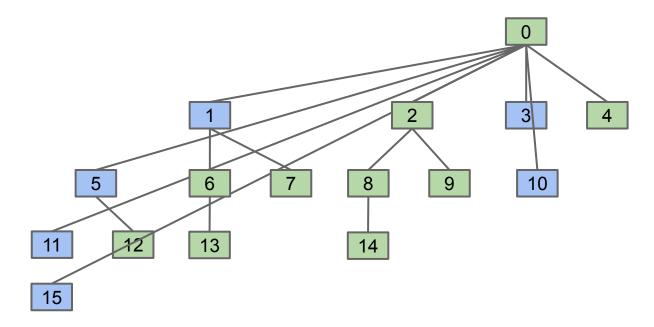




Below is the topology of the worst case if we use WeightedQuickUnion.

Clever idea: When we do isConnected(15, 10), tie all nodes seen to the root.

• Additional cost is insignificant (same order of growth).

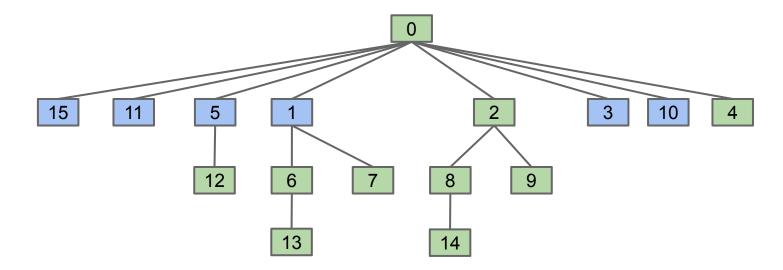




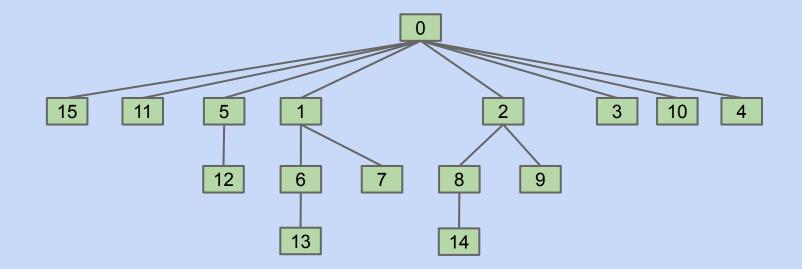
Below is the topology of the worst case if we use WeightedQuickUnion.

Clever idea: When we do isConnected(15, 10), tie all nodes seen to the root.

• Additional cost is insignificant (same order of growth).

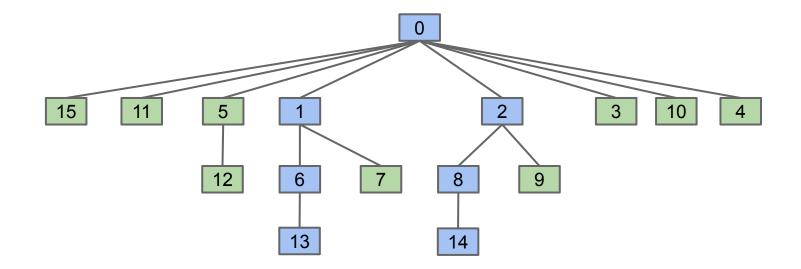






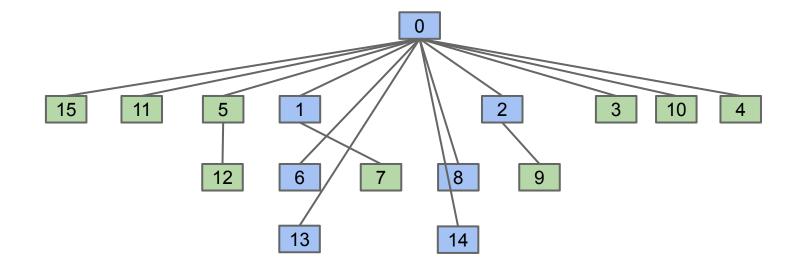


#### Path Compression: Another Clever Idea



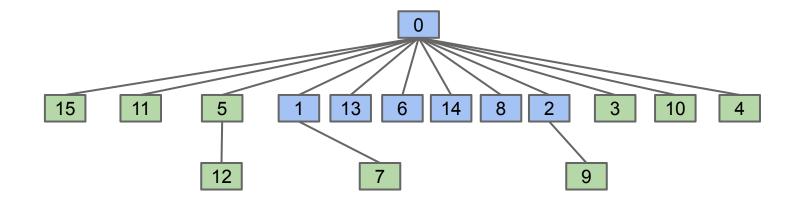


#### Path Compression: Another Clever Idea





#### Path Compression: Another Clever Idea





#### Intuition

By compressing the tree with each union and isConnected call, we keep the tree nice and short.

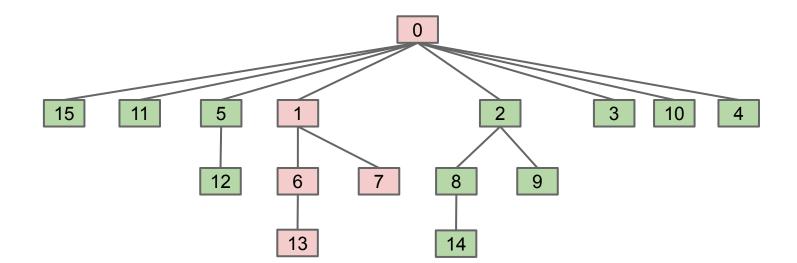
- As number of nodes N grows, our tree tends to get taller.
- As number of operations M grows, our tree tends to get shorter.
  - For enough operations tree height will shrink to 1.



By compressing the tree with each union and isConnected call, we keep the tree nice and short.

Note: The tree we started with in the exercise you completed is impossible to generate if we're using path compression!

• The structure in red is impossible (try to convince yourself if you'd like).





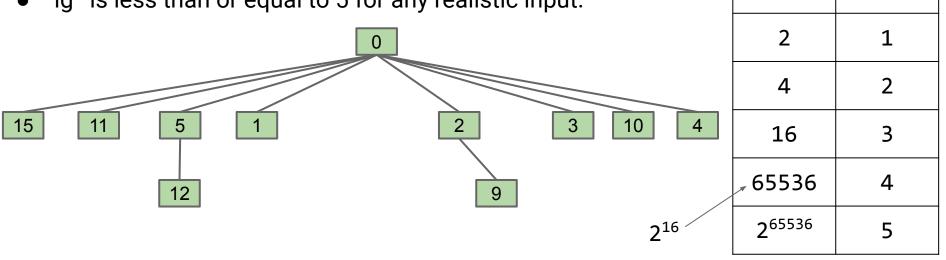
In CS170, you'll show that each isConnected or connect operation takes on average lg\* N time because the tree is kept so compressed.

 Ig\*: How many times you need to press the log2 button on a calculator before you get to a number that is 1 or less. Example: <u>http://joshh.ug/logstar/demo.html</u>
 N lg\* N

1

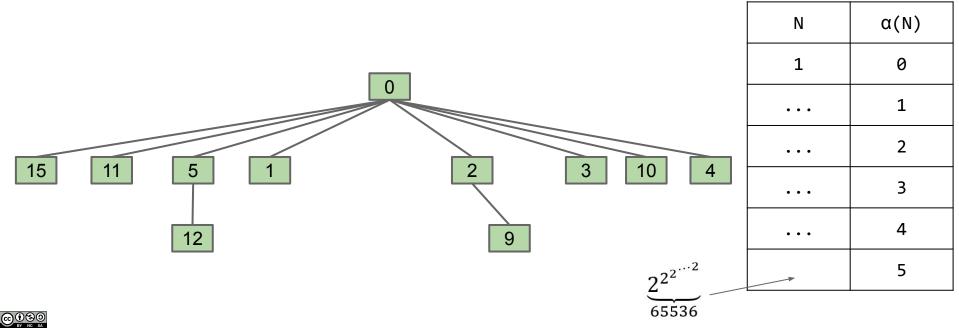
0

- M operations on N nodes takes O(M lg\* N) time for large M.
- Ig\* is less than or equal to 5 for any realistic input.



You can provide an even tighter bound, showing that each operation takes on average  $\alpha(N)$  time.

- α is the inverse Ackermann function.
- See "Efficiency of a Good But Not Linear Set Union Algorithm."
  - Written by Bob Tarjan while at UC Berkeley in 1975.



And we're done! The end result of our iterative design process is the standard way disjoint sets are implemented today - quick union and path compression.

The ideas that made our implementation efficient:

- Represent sets as connected components (don't track individual connections).
  - **ListOfSetsDS**: Store connected components as a List of Sets (slow, complicated).
  - **QuickFindDS**: Store connected components as set ids.
  - **QuickUnionDS**: Store connected components as parent ids.
    - WeightedQuickUnionDS: Also track the size of each set, and use size to decide on new tree root.
      - WeightedQuickUnionWithPathCompressionDS: On calls to connect and isConnected, set parent id to the root for all items seen.



| Implementation                          | Runtime    |
|-----------------------------------------|------------|
| ListOfSetsDS                            | O(NM)      |
| QuickFindDS                             | Θ(NM)      |
| QuickUnionDS                            | O(NM)      |
| WeightedQuickUnionDS                    | O(M log N) |
| WeightedQuickUnionDSWithPathCompression | Ο(M α(N))  |

Runtimes are given assuming:

- We have a DisjointSets object of size N.
- We perform M operations, where an operation is defined as either a call to connected or isConnected.

