
Status report and outlook
Junjie Xia

Aug 23 2024, CIDeR-ML

Dataloader optimization
Recap:
At the end of the workshop, mentioned that the padding of “zero-hit” PMTs seemed
to take longer than expected and was the dominant fraction of data arrangement
while loading:

- Needs padding twice per event—for Q & T over ~10k PMTs
- The padding function took ~300 us per hit, which was significantly longer than

usual
- The 2 paddings per event took > 95% of the cached data processing time

Fixed the problem by removing an unnecessary `np.array(list)` casting:
- The new padding function takes ~30 us per hit
- Tested over 10 photon shotgun files (30000 events), data processing time:

24.45 -> 2.03 sec 2

New WCSim data generation

Recap:
- decided to run uniform and isotropic data generation in voxel volumes

instead of on fixed grid points
- WCSim takes in the range of voxel vertices in (r, φ, z) coordinates

Expanded `wcprod` (https://github.com/seanxia8/wcprod_cider.git) to prepare
database of this format (the grid point function still works), e.g.:

3

cfg=db.get_random_config('example_project_vox
_10000')
cfg
=================
{'config_id': 498,
 'table_id': 0,
 'r0': 120.0,
 'r1': 150.0,
 'phi0': 0.3490658503988659,
 'phi1': 0.5235987755982988,
 'z0': 90.0,
 'z1': 120.0,
 'file_ctr': 0}

To conserve the voxel
volume, the range of φ
depends on r and the
the number of
segments in the
innermost circle.

https://github.com/seanxia8/wcprod_cider.git

Next step

1. Generate some toy WCSim voxelized data on s3df using
“example_project_vox_10000” project, which means 10k photons per voxel

2. Run more diagnostics on the data loader with this toy set:

4

data =
db.get_project('example_project_vox_10
000')
print(data)
============
 Project name:
example_project_vox_10000
 Cylinder geometry
 R: 0.0 => 200.0
 Z: 0.0 => 400.0
 Gap space: 30.0
 Gap angle: 10.0
 Starting n phi: 4
 Sampling points: 2016
 Sampling directions: 1
 Sampling configs: 2016
 Photons per config: 10000

5

Data loading bottlenecks:
- The current WCSim data format doesn’t support batch processing because of the varied

data length of hit PMTs per event and the need of indexing each hit PMTs.

- The time to iterate over files 1 by 1, h5 dataset by dataset scales linearly with number of
files.

- The enumeration over .h5 files has the following effects:
1. Read in from disk and memory allocation (O(100) msec for an array, needs to do

this 4 times per file)
2. Rearrange the loaded data after padding and revise the allocated mem (O(100)

us per event)

- The reason of this data format was probably to save disk->mem time from the 0 hits

- Plan to investigate the economy here: the balance among the memory usage, loading time,
and the data processing. Move data augmentation to the pre-processing as much as
possible.

Next step

