
TD Assertions
How WoT implementers help the TD specification!

Ege Korkan and Michael McCool

1

Goal of Testing

The WoT Working Group needs to verify the implementability of each
specification before it can be published as a W3C Recommendation.

● Each specification has a set of “assertions” (statements including words like
MUST, MAY, SHOULD, etc.) about each optional and required feature.

● For the Thing Description specification, we look at set of TDs submitted by
participants for each implementation and do one of two things:
1. Run a tool to verify as many features as possible automatically.
2. For those that cannot be verified automatically, ask for “manual”

validation from participants by submission of a CSV file.

2

Result of Testing

Testing results in a detailed
Implementation Report:

https://w3c.github.io/wot-thing-de
scription/testing/report11.html

● Each implementation needs
a (mostly) distinct code
base.

● There can be multiple
implementations from the
same organization.

3
More than 300 lines like this!

https://w3c.github.io/wot-thing-description/testing/report11.html
https://w3c.github.io/wot-thing-description/testing/report11.html

Goal of Testfests

The Working Group verifies the implementability of each specification using events
called Testfest.

For TD, during a Testfest we ask implementers indicate what features specified by
the TD specification have been implemented.

However, new test results can be submitted at any time with a PR; it is not
necessary to wait for a Testfest.

4

TODO

● Link to spec text from implementation report at the slide titles (Cris)
● Put a slide about the structure of the assertion explanation slides

○ Say additional description
● Adding TD examples (some from Daniel: sec-body-*)

○ Adding payload examples
● Show implementation report
● Motivation (why is this important):

○ Mention that we can change the spec based on this
○ W3C Process requires this
○ Implementability of the specification
○ Checking interoperability among implementations

● Add "more" -> Need 1 more implementation
● Change "Resolution” to “Developer Instructions”

5

Goal of this Event

We have realized that some of our assertions are not very self-explanatory.

It is not always possible to have multiple sentences explaining an assertion in the
specification. We want to use this slideset to provide additional description on
how to implement such features. This way, you can start submitting your TDs and
implementation results.

If features are not implemented, we have at risk features.

?
6

At Risk: What does it imply?

When an assertion (i.e. a feature) has less than 2 implementations, it cannot be part of
the final W3C Recommendation.

● Example: We introduced the multipleOf term.
● We need at least 2 different implementations (at least 1 TD from each) that have this

term in them in order for this feature to be included in the specification.

When we publish a Candidate Recommendation, if there is a lack of implementation,
that assertion becomes at risk and is highlighted yellow in the specification.

● If an assertion is still at risk by the time of transition to Proposed Recommendation,
we have to remove the assertion (and the feature).

7

Assertion Context

It is not always possible
to understand an
assertion by itself.

Please also look at the
context.

The context usually also
includes additional
explanatory (informative)
text.

8

Danger Zone!
Please note that we are looking at
the remaining 5% of the features
after we have already done
significant testing.

These are sometimes difficult to
implement, and sometimes are only
applicable to special cases.

9

How to Contribute

Instructions: Please follow our the GitHub Readme at
https://github.com/w3c/wot-testing/tree/main/events/2023.03.DevMtg

It is simply about uploading TDs and CSV files

Deadline: 17 May 2023

This is the planned Recommendation transition date minus 2 weeks so that we have time to fix
the specification.

● If we do not get implementation evidence by then we have to start work to remove these
assertions from the specification.

If you need help with submitting results, contact Ege Korkan and Michael McCool.

There will be another event to collect inputs in the week of April 24th.

10

https://github.com/w3c/wot-testing/tree/main/events/2023.03.DevMtg
mailto:ege.korkan@siemens.com
mailto:michael.mccool@intel.com

Overall List of At Risk Features in TD

From https://github.com/w3c/wot-thing-description/blob/main/testing/atrisk.csv

● td-producer-mixed-direction
● sec-body-name-json-pointer
● sec-body-name-json-pointer-creatable
● sec-body-name-json-pointer-array
● sec-body-name-json-pointer-type
● td-security-uri-variables-distinct
● td-security-oauth2-client-flow
● td-security-oauth2-client-flow-no-auth
● td-security-oauth2-device-flow (2)

11

Some of these need 1 more and some need 2 more implementations.
Corresponding slides include the number

● tm-derivation-validity (resolved)
● tm-versioning-1
● security-mutual-auth-td (resolved)
● security-server-auth-td (1)
● security-context-secure-fetch (2)
● security-oauth-limits
● security-static-context (resolved)
● security-remote-context (1)
● privacy-immutable-id-as-property (1)

https://github.com/w3c/wot-thing-description/blob/main/testing/atrisk.csv

Assertion Categories

● API Key in Body
○ sec-body-name-json-pointer
○ sec-body-name-json-pointer-creatable
○ sec-body-name-json-pointer-array
○ sec-body-name-json-pointer-type

● OAuth2
○ td-security-oauth2-client-flow
○ td-security-oauth2-client-flow-no-auth
○ td-security-oauth2-device-flow
○ security-oauth-limits

● Thing Models
○ tm-derivation-validity
○ tm-versioning-1

● Secure Context Handling
○ security-static-context
○ security-remote-context
○ security-context-secure-fetch

● TD Retrieval
○ security-mutual-auth-td
○ security-server-auth-td

● Others
○ td-security-uri-variables-distinct
○ td-producer-mixed-direction
○ privacy-immutable-id-as-property

12

Structure of each Assertion Explanation

13

Assertion ID and Link to Context

Assertion
description
from the
specificationWhat should a

developer do

How many more
implementations we need

API Key in the body assertions

TD 1.1 has introduced a new API key mechanism where the key can be sent as
part of the message payload (body).

Following 4 assertions are about this.

14

sec-body-name-json-pointer

When used in the context of a body security information location, the value of
name MUST be in the form of a JSON pointer [RFC6901] relative to the root of the
input DataSchema for each interaction it is used with.

Developer Instructions:

Having an API key scheme with “in”:“body” and a pointer to body

Need 1 more implementation 15

https://w3c.github.io/wot-thing-description#sec-body-name-json-pointer

sec-body-name-json-pointer-type

The element referenced (or created) by a body security information location MUST
be required and of type "string".

Developer Instructions:

When pointing to a key with the name keyword, that key should have type string

16Need 1 more implementation

https://w3c.github.io/wot-thing-description/#sec-body-name-json-pointer-type

Example TD
{ "@context": "https://www.w3.org/2022/wot/td/v1.1", "title": "sec-body-name-json-pointer sample",

 "securityDefinitions": {

 "apikey_body": {

 "scheme": "apikey",

 "in": "body",

 "name": "/keyLocation"

 } },

 "security": ["apikey_body"],

 "actions": {

 "moveTo": {

 "input": {

 "type": "object",

 "properties": {

 "x": { "type": "integer" },

 "y": { "type": "integer" },

 "keyLocation": { "type": "string" }

 } },

 "forms": [{

 "href": "http://localhost:8080/actions/moveTo"

 }] } } }

17

sec-body-name-json-pointer-creatable

When an element of a data schema indicated by a JSON pointer indicated in a
body locator does not already exist in the indicated schema, it MUST be possible
to insert the indicated element at the location indicated by the pointer.

Developer Instructions:

If when pointing to a key in a payload schema, if the target does not exist in the
schema, then the API key should be inserted during the generation of the payload.

Note: Without this feature the key would need to be added to all payload data
schemas.

18Need 1 more implementation

https://w3c.github.io/wot-thing-description/#sec-body-name-json-pointer-creatable

Example TD and Payload
{ "@context": "https://www.w3.org/2022/wot/td/v1.1", "title": "sec-body-name-json-pointer-creatable sample",

 "securityDefinitions": {

 "apikey_body": {

 "scheme": "apikey",

 "in": "body",

 "name": "/keyLocationToCreate"

 } },

 "security": ["apikey_body"],

 "actions": {

 "moveTo": {

 "input": {

 "type": "object",

 "properties": {

 "x": { "type": "integer" },

 "y": { "type": "integer" }

 } },

 "forms": [{

 "href": "http://localhost:8080/actions/moveTo"

 }] } } }

19

{

 "x": 12,

 "y": 100,

 "keyLocationToCreate": "mySecret"

}

Payload

sec-body-name-json-pointer-array

The JSON pointer used in the body locator MAY use the "-" character to indicate a
non-existent array element when it is necessary to insert an element after the last
element of an existing array.

Developer Instructions:

Pointer having value “-” means that payload (which should be an array) should
have the API key concatenated with it as the last element.

Note: Without this feature the key would need to be added to all payload data
schemas and would not be flexible enough for arrays with varying length

20Need 1 more implementation

https://w3c.github.io/wot-thing-description/#sec-body-name-json-pointer-array

Example TD and Payload
{ "@context": "https://www.w3.org/2022/wot/td/v1.1", "title": "sec-body-name-json-pointer-array sample",

 "securityDefinitions": {

 "apikey_body": {

 "scheme": "apikey",

 "in": "body",

 "name": "-"

 } },

 "security": ["apikey_body"],

 "actions": {

 "moveIn": {

 "input": {

 "type": "array",

 "items": [

 { "type": "integer" },

 { "type": "integer" }

],

 "additionalItems": { "type": "string" }

 },

 "forms": [{

 "href": "http://localhost:8080/actions/moveIn"

 }] } } }

21

[

 12, 100, "mySecret"

]

Payload

OAuth2

These are about how to configure the OAuth2 security scheme field inside
securityDefinitions

The code flow is very detailed, and after that, we keep on removing some steps in
the other flows to make it more simple. Hence for some, we need only the token
server URL and for some, we need authorization and token server URL.

22

td-security-oauth2-client-flow

For the client flow token MUST be included.

Developer Instructions:

TDs always need the token key set when the OAuth2 client flow is used. Of
course this means OAuth2’s client flow needs to be implemented also. This
indicates the URL of the token server.

23Need 1 more implementation

https://w3c.github.io/wot-thing-description/#td-security-oauth2-client-flow

Example TD
{

 "title": "myThing",

 "@context": "https://www.w3.org/2022/wot/td/v1.1",

 "securityDefinitions":{

 "oauth2_sc":{

 "scheme":"oauth2",

 "flow": "client",

 "token":"https://dev-37050809.okta.com/oauth2/aus7n8imnqQY5YWWq5d7"

 }

 },

 "security":"oauth2_sc",

 // ...

}

24

td-security-oauth2-client-flow-no-auth

For the client flow authorization MUST NOT be included.

Developer Instructions:

Do not put a value for authorization in the security scheme when using the
OAuth2 client flow. In other OAuth2 flows this value would point to an
authorization server but this is not used in the client flow. Of course this means
OAuth2’s client flow needs to be implemented also.

25Need 1 more implementation

https://w3c.github.io/wot-thing-description/#td-security-oauth2-client-flow-no-auth

Example TD
{

 "title": "mygardenthing",

 "@context": "https://www.w3.org/2022/wot/td/v1.1",

 "securityDefinitions":{

 "oauth2_sc":{

 "scheme":"oauth2",

 "flow": "client",

 "token":"https://dev-37050809.okta.com/oauth2/aus7n8imnqQY5YWWq5d7",

 "authorization":"https://myAuth.server.com/myId"

 }

 },

 "security":"oauth2_sc",

 // ...

}

26

https://dev-37050809.okta.com/oauth2/aus7n8imnqQY5YWWq5d7

td-security-oauth2-device-flow

For the device flow both authorization and token MUST be included.

Developer Instructions:

In the OAuth2 device flow, values for both the authorization and token keys should
be present at the same time in the security scheme. Of course this means
OAuth2’s device flow needs to be implemented.

27Need 2 new implementations

https://w3c.github.io/wot-thing-description/#td-security-oauth2-device-flow

Example TD
{

 "title": "mygardenthing",

 "@context": "https://www.w3.org/2022/wot/td/v1.1",

 "securityDefinitions":{

 "oauth2_sc":{

 "scheme":"oauth2",

 "flow": "device",

 "token":"https://dev-37050809.okta.com/oauth2/aus7n8imnqQY5YWWq5d7",

 "authorization":"https://myAuth.server.com/myId"

 }

 },

 "security":"oauth2_sc",

 // ...

}

28

https://dev-37050809.okta.com/oauth2/aus7n8imnqQY5YWWq5d7

security-oauth-limits

To limit the scope and duration of access to Things, tokens SHOULD be used to
manage access.

Developer Instructions:

This assertion is made in the context of managing limited duration accesses, i.e.
providing a visitor with a temporary pass. Tokens are ideal for this situation since
they can be given expiry times. Tokens can be used directly with the bearer
security scheme or as part of OAuth2 flows.

In fact, ANY implementation that uses bearer tokens, as long as those tokens are
given expiry times, can be considered as satisfying this assertion.

29Need 1 new implementation

https://w3c.github.io/wot-thing-description/#security-oauth-limits

Thing Models

A Thing Model mainly describes interaction affordances such as the Properties,
Actions, and Events and common metadata. This paradigm can be compared with
abstract class or interface definition (~Thing Model) in object-oriented
programming to create objects (~Thing Descriptions).

30

tm-derivation-validity

When a Thing Descriptions is instantiated by relying on a Thing Model, it SHOULD
be valid according to that Thing Model.

Developer Instructions:

TM to TD generators that are doing their job correctly should pass this: the TD
needs to be an instance of the TM.

31Need 0 more implementations

https://w3c.github.io/wot-thing-description/#tm-derivation-validity

Example TM and its valid TD

{

 // ...

 "@type": "tm:ThingModel",

 "title": "Smart Pump",

 "id": "urn:example:{{RANDOM_ID_PATTERN}}",

 "description": "Smart Pump live plant and
simulator",

 "version" : {"model" : "1.0.0" },

 "properties" : {

 "temp" : { "type" : "string" //... } }

// ...

}

32

{

 // ...

 "@type": "Thing",

 "title": "Smart Pump",

 "id": "urn:example:123-321-123-321",

 "description": "Smart Pump live plant and simulator",

 "version" : {"instance": "1.0.0", "model": "1.0.0" },

 "properties" : {

 "temp" : { "type" : "string" //... } }

 "links" : [{ // ...}],

// ...

}

Simple TM Simple TD instance

See also Example 66 (TM) Example 67 (TD)

Needs to be equal

Needs to be equal

Needs to be
following pattern

Needs to be equal

https://w3c.github.io/wot-thing-description/#example-extending-smart-control-lamp-with-a-modified-dim-constrained
https://w3c.github.io/wot-thing-description/#example-thing-description

Example TM and its invalid TD

{

 // ...

 "@type": "tm:ThingModel",

 "title": "Smart Pump",

 "id": "urn:example:{{RANDOM_ID_PATTERN}}",

 "description": "Smart Pump live plant and
simulator",

 "version" : {"model" : "1.0.0" },

 "properties" : {

 "temp" : { "type" : "string" //... } }

// ...

}

33

{

 // ...

 "@type": "Thing",

 "title": "Smart Pump 1",

 "id": "urn:mac:123-321-123-321",

 "description": "Smart Pump live plant and simulator",

 "version" : {"instance": "1.0.0", "model": "1.0.0" },

 "properties" : {

 "temp" : { "type" : "number" //... } }

 "links" : [{ // ...}],

// ...

}

Simple TM Simple TD instance

tm-versioning-1

When the Thing Model definitions change over time, this SHOULD be reflected in
the version container.

Developer Instructions:

If you version TMs, you are doing this.

34Need 1 more implementation

https://w3c.github.io/wot-thing-description/#tm-versioning-1

Two Versions of a TM

{

 // ...

 "@type": "tm:ThingModel",

 "title": "Smart Pump",

 "id": "urn:example:{{RANDOM_ID_PATTERN}}",

 "description": "Smart Pump live plant and
simulator",

 "version" : {"model" : "1.0.0" },

 "properties" : {

 "temp" : { "type" : "string" //... } }

// ...

}

35

TM Version 1.0.0 TM Version 1.0.1

{

 // ...

 "@type": "tm:ThingModel",

 "title": "Smart Pump {{INCREMENT}}",

 "id": "urn:example:{{RANDOM_ID_PATTERN}}",

 "description": "Smart Pump live plant and
simulator",

 "version" : {"model" : "1.0.1" },

 "properties" : {

 "temp" : { "type" : "string" //... } }

// ...

}

Secure Context Handling

These are about how implementations should fetch and/or manage ontologies.

36

security-static-context

Constrained implementations SHOULD use vetted versions of their supported context
extensions managed statically or as part of a secure update process.

Developer Instructions:

Implementations that read TDs should generally avoid downloading context extensions,
as it is expensive and a possible privacy risk, and should instead support a fixed set of
extensions “baked into” their code, UNLESS the system can support full JSON-LD/RDF
processing.

If you don’t support RDF processing then you probably implement this assertion -
possibly trivially, if your implementation does not support ANY extensions. However, any
vocabulary that uses a prefix to support a protocol, e.g. htv, can be considered as
supporting a vocabulary extension.

37Need 0 more implementations

https://w3c.github.io/wot-thing-description/#security-static-context

security-remote-context

Constrained implementations SHOULD NOT follow links to remote contexts.

Developer Instructions:

This is actually very similar to security-static-context: it just means don’t fetch links
to context files listed in the @context unless you absolutely have to. If the context
can be recognized by the URL, it’s better for the implementation to have the
meaning of that context “baked into” it rather than fetching the definition. The
extension vocabularies associated with contexts need to be “fixed” for this reason.

If a Consumer has a built-in understanding of any extension vocabulary, for
instance even for a protocol binding such as htv, then it probably implements this.

38Need 1 new implementation

https://w3c.github.io/wot-thing-description/#security-remote-context

security-context-secure-fetch

If it is necessary to fetch a context definition file, an implementation SHOULD first
attempt to use HTTP over TLS even when only an HTTP URL is given.

Developer Instructions:

Even if your implementation sees http:// it should first attempt to use https://, that is
TLS, to fetch context definitions. This is just because context links are often
conventionally given as http, but we still want to fetch them securely whenever
possible (and necessary).

Compare with the previous assertion: only systems that do RDF processing
need to even worry about this. At present, this mostly means implementations
of Thing Description Directories supporting SPARQL as part of WoT Discovery.

39Need 2 new implementations

https://w3c.github.io/wot-thing-description/#security-context-secure-fetch

TD Retrieval

Secure retrieval of TDs

These relate to fetching TDs from external sources, e.g. web servers. Note that in
the next iteration of the standards these may be moved to Discovery and they
overlap with some assertions there.

40

security-mutual-auth-td

Thing Descriptions SHOULD be obtained only through mutually authenticated
secure channels.

Developer Instructions:

This means that “mutual” TLS should (ideally) be used when fetching a TD. In this
case both the server and the client need to present certificates to each other.
Note that on the public internet often only one-way TLS is used, identifying the
server to the client. But identifying the client to the server provides better security,
and this is often used in internal corporate web servers. If a web server requests
a client certificate the browser will ask the user to provide one.

41Need 0 more implementations

https://w3c.github.io/wot-thing-description/#security-mutual-auth-td

security-server-auth-td

In cases where the Consumer is associated with a person, e.g. browsers, TDs
MAY be obtained through a channel where only the TD provider is authenticated.

Developer Instructions:

This may seem to conflict with security-mutual-auth-td, but the trouble with mutual
TLS is that it reveals (in fact, proves) the identity of the client. So in situations
where the client wants to protect their identity they should NOT use client
certificates. This is in fact the normal mode of operation of the web on the open
internet - it is an example of security and privacy sometimes being in conflict.

However, any implementation that does not use a client certificate when fetching a
TD (but does use https (TLS) to authenticate the server) satisfies this assertion.

42Need 1 new implementation

https://w3c.github.io/wot-thing-description/#security-server-auth-td

Others

Assertions that did not fit into a specific category

43

privacy-immutable-id-as-property

Ideally, any required immutable identifiers SHOULD only be made available via
affordances, such as a property, whose value can only be obtained after appropriate
authentication and authorization, and managed separately from the TD identifier.

Developer Instructions:

Some systems or contexts (e.g. medical) may require devices to have immutable ids, but
these can be privacy risks. Rather than using such ids directly as the id of the TD,
consider having the immutable id of the Thing retrievable via a property affordance and
use a different id (which can be updated if necessary) for the TD. Property affordances
can be protected with additional authorization controls, unlike the content of the TD.

To satisfy this assertion you just need a property that returns an immutable id (like the
MAC address).

44Need 1 more implementation

https://w3c.github.io/wot-thing-description/#privacy-immutable-id-as-property

Example TD
{

 "@context": "https://www.w3.org/2022/wot/td/v1.1",

 "title": "OxygenConcentrator",

 "description": "An internet connected portable oxygen concentrator",

 "securityDefinitions": {"basic_sc": {"scheme": "basic"}},

 "security": "basic_sc",

 "properties": {

 "thingId": {

 "type": "string","readOnly": true

 //...

 },

 "ownerInformation": {

 "type": "object",

 "properties": {

 "name": {"type": "string"},

 "userId": {"type": "string"}

 },

 "readOnly": true,

 //...

 }

 }

}

45

no id field

Private data
behind
affordances
that need
Basic Auth

td-security-uri-variables-distinct

The names of URI variables declared in a Security Scheme MUST be distinct from
all other URI variables declared in the TD.

Developer Instructions:

Any uriVariables declared in security schemes can’t conflict with any others
declared elsewhere in the TD.

Note that this is trivially satisfied if there are no other uriVariables declared outside
of a security scheme, also.

46Need 2 new implementations

https://w3c.github.io/wot-thing-description/#td-security-uri-variables-distinct

Example TD
{

 "@context": "http://www.w3.org/ns/td" ,

 // ...

 "uriVariables": {

 "apiversion": {

 "type": "string", "enum":["v1","v2.1"]

 }

 },

 "properties": {

 "weather": {

 // ...

 "uriVariables": {

 "city": {"type": "string"}

 },

 "forms": [{"href": "http://example.org/{apiversion}/weather/{city}" }]

 }

 }

} 47

They should be different

td-producer-mixed-direction

TD producers SHOULD attempt to provide mixed direction strings in a way that can be displayed
successfully by a naive user agent.

Developer Instructions:

Mixed direction strings may occur when text from two languages are mixed in one string, for example
including an English word (like a product name) in the middle of Hebrew text. Very often systems need to
guess at the rendering direction and use various rules to do so, but generally the first character is what
determines the overall direction. Strings should be worded so the first character gives the correct
direction for the entire string.

The real problem is generating examples for this. If your native language is Arabic or Hebrew, please
consider submitting TDs with mixed language strings. Tests should then check if these are displayed
correctly, e.g. in browsers generating dashboards from these TDs.

If you are a native speaker of a language with Right To Left writing, please try implementing this.

48Need 1 more implementation

https://w3c.github.io/wot-thing-description/#td-producer-mixed-direction

Example

Correct TD here

49

http://plugfest.thingweb.io/playground/#C4EwVgzg9gdg3gKAAQqQIgJYjQLnQVwCcYcIMBbABwBsBTAdQ2AAsARWgMwEN9rgI0AGmSo0AAQDGsYLQAewXOmbBglCDgD0GgO66AdNoDMeqIQDmGgEwAGS5Z1RgG0BoBuARj3uhIlGmBMdIpoALIAngAyXFQAKswYMGY+qOggtBAShBiUAbDBgCxggFJggIRgSIWAQmCFgMxgSID0YICMYIA0YICUYEiA5GCAImCAtGD1bQCSMDLUGADs9a2AEmBlgBxggOJg9UhdnYBUYLPJohC0EkRMYewcCUwYsAJ4iCkpaABGXGQSAPoZiucXr2gZzLTktME3d+uvS4JYKfLhpQhoXwXAC+UOhwkum22WWAYUUAG0oZc-hgHk8oQBdBGiSiEKCUWiEALpZ5YjbALjAfCnJAvQGiVEU4IQYBZRIA9noQi0MEAeRg1DReF5+FoxMF6G0KNo4slim41E28sFaCgV02hFcXCuQTwGq1dLeHFM5BZmIVrzZDrezGFHBBKjUmg05DC1GilD0cgDdD0UnIGh5jOZAudl3JwWFYNJ5MpqNjcb8UkGtEGMTCXLwaC4lBouMZxxgGkgeUtgthzoJdYbqHhUOLElyMBZTsuwCgZjMptZdcRXA4PzNXE1ctHoiwX0ojlzCinM+17LQ1sItoxc8d+51rs4HtU6i0vv9VCDshDtDDUAj-cHQQ3mfQCaLCVcUAA1iLO0rDNMzQbMZDzAtJ3QEsywkCtYGraAYEhd8kBbBUm3ZdC0O1NBaFcFcezrXUCMIUEAn5M5DzQEBGS4WlUP8SDuV5BIkjfBU0CTEBVSlJAZVnRilSYFUJT481aEPNtnS3G07UPFJe3fNBj3dItlDPb1LwDG87wfCMoGYYC411ShuXwfVMgwK5aHwldjJkiALJTfspGoYJqFgMwl2odyOJMsCV3zQtoNLYY4K7RDa1Q7D2UwwFsNhaEgA

