
Google’s Protocol Buffers (Protobuf)

Generated protobuf code
(native C++, Python, Go, 

Java, etc.)

+ pdg()
+ vertex()
+ p()
+ ...

Particle

01001010111000010101...

protoc

protobuf “language” describes simple 
data types from unsigned ints to maps

protobuf wire format



Notable Features

Pros

● Language neutrality
● Varint compression and natural 

compression of sparse data
● Forward/backward compatibility

○ Fields (members) can be safely 
added and removed over time

● Developed and maintained by IT 
industry

Cons

● Low-level: HEP-oriented features 
have to be added on top
○ E.g. additional compression, lazy 

decoding, random access
● Field identifiers add size overhead 

for dense data



ProIO

● Project for utilizing protobuf for HE(N)P in 
a language-neutral way
○ C++, Python, Go, and Java native 

libraries already implemented*
● Supported by ANL LDRD and eRD20 

(multi-lab EIC Software Consortium)
● Based on pioneering work by Sergei 

Chekanov (ANL) and Alexander Kiselev 
(BNL)

● Currently migrating from 
https://github.com/decibelcooper/proio 
to https://github.com/proio-org

*Java implementation is currently incomplete, but read 
functionality is there

https://github.com/decibelcooper/proio
https://github.com/proio-org


Data Size and Varint (fixed-point) Compression

J. Blomer, A quantitative review of data formats for HEP 
analyses ACAT 2017

http://atlaswww.hep.anl.gov/hepsim/info.php?item=326

http://atlaswww.hep.anl.gov/hepsim/info.php?item=326

