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Notable Features

Pros

● Language neutrality
● Varint compression and natural 

compression of sparse data
● Forward/backward compatibility

○ Fields (members) can be safely 
added and removed over time

● Developed and maintained by IT 
industry

Cons

● Low-level: HEP-oriented features 
have to be added on top
○ E.g. additional compression, lazy 

decoding, random access
● Field identifiers add size overhead 

for dense data



ProIO

● Project for utilizing protobuf for HE(N)P in 
a language-neutral way
○ C++, Python, Go, and Java native 

libraries already implemented*
● Supported by ANL LDRD and eRD20 

(multi-lab EIC Software Consortium)
● Based on pioneering work by Sergei 

Chekanov (ANL) and Alexander Kiselev 
(BNL)

● Currently migrating from 
https://github.com/decibelcooper/proio 
to https://github.com/proio-org

*Java implementation is currently incomplete, but read 
functionality is there

https://github.com/decibelcooper/proio
https://github.com/proio-org
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