
REC 2: LOOPS
& SEQUENCES
CIS 1100 (PYTHON), 9.23/4

LOGISTICS & REMINDERS
1. HW2: Personality Quiz is due 09/25 @ 11:59 PM
2. Mandatory code review sign-ups due 09/25 @ 11:59 PM

a. Check your email for details!

b. Will be held 09/26–10/02

3. Optional Sunday Review Sessions every Sunday!!
a. Check Ed Discussion for updates on the time

b. Get extra practice with exam questions

c. Ask any conceptual questions 1:1

CLARIFYING FILE HEADERS
• Name: Hopefully self-explanatory
• PennKey: The one with letters, not the 8-digit number
• Execution: What you type into the terminal to run your code (including command line arguments)

python [filename].py [argument 1] [argument 2] [==.]
Note: If there are multiple options for an argument, you can give specific examples for each or list
all the options in one line (ultimately, if it’s clear how to run your program, you’ll get credit)

• Description: A brief explanation of what your program does at a high level

Let’s go through an example together for the upcoming homework!

SEQUENCES

LOOPS

COMMAND LINE ARGS

TABLE OF CONTENTS
01

03
02

WORKSHEET04

SEQUENCES01
What are sequences, what types of sequences are

there, and how can we operate on them?  

SO, WHAT EVEN IS A SEQUENCE?
So far, we’ve talked about individual values: ints, bools, etc.
Sequences allow us to handle multiple values at once. Specifically:

• Sequences are ordered collections of values

• Each element has an index, going from 0 to the length of the

sequence

SEQUENCES IN REAL LIFE
• 7-day pill box (each box contains certain pills)
• Spreadsheet column
• Vectors in math
• Strings! (They’re sequences of individual characters)

‘cis1100’

‘c’ ‘i’ ‘s’ ‘1’ ‘1’ ‘0’ ‘0’

0 1 2 3 4 5 6

Type Element type Mutable Example

str Characters (length-1
strings)

False “Hello”, “cis1100”

list Anything True [“a”, “b”], [1, False]

tuple Anything False (“a”, “b”), (1, False)

range Ints False range(1, 3) →

SEQUENCES IN PYTHON

SEQUENCE OPERATIONS
Action Code Example

Get the i-th element seq[i] “Hello”[2] # == “l”

Get the length of a sequence len(seq) len([1, 2, 3]) # == 3

Concatenate (join together)
two sequences

seq1 + seq2 (1, 2) + (‘a’, b’) # == (1, 2, ‘a’, ‘b’)

Modify the i-th element (Note:
This is only for lists)

seq[i] = ___ seq = [1, 2]
seq[1] = 3 # seq == [1, 3]

Enumerate the indices of each
element in the sequence

enumerate(seq) seq = [‘a’, ‘b’]
enumerate(seq) == [(0, ‘a’), (1, ‘b’)]

TUPLES VS. LISTS
At first blush, tuples and lists seem very similar—the key difference is that lists
are mutable, while tuples aren’t. This gives rise to several functions that only
lists can use:

• li.append(x): Adds element x to the end of li
• li.insert(i, x) : Inserts element x to the i-th index of li
• li.extend(li2): Concatenates li with another sequence li2

RANGES
Ranges are a bit different from other sequences
in that you don’t write out all their values.
Instead, they’re defined by 3 numbers: the start,
end, and step size.

range(start, stop, step_size)

range(2, 14, 4)
 ↳ 2, 6, 10

0 2 4 6 8 10 12 14

4 4 4

There are some shortcuts for common steps too:
• range(start, stop) == range(start, stop, 1)
• range(stop) == range(0, stop, 1)

Quick check-in: What are the values in
the following ranges?
● range(-1, 5)
● range(3)
● range(4, -1, -1)

SEQUENCE SLICING
What if we want to get a whole section of a sequence, like the
first 5 elements? A subsequence like this is called a slice, and
Python has a neat shortcut for getting it:

seq[start:end:step_size]

• This works almost the same way as ranges!
• Some shortcuts:

– seq[start:end] == seq[start:end:1]
– seq[:end:step_size] == seq[0:end:step_size]

(similarly, seq[:end])
– seq[start=:step_size] ==

seq[start:len(seq):step_size]

(similarly, seq[start:])

– … etc.

Let’s try it out: Let
s = “I love CIS 1100”

What are the following values:
● s[:3]
● s[4:5]
● s[5:5]
● s[=:-1]

MEMBERSHIP
One final tool that’s useful is membership checking. The in operator tells us if an element is
anywhere in a sequence. For example, with s = [1, 2, 3, 4] …
• 2 in s → True
• 0 in s → False
• 1 in s[1:] → False

With strings only, you can even check if substrings are in the sequence. With s = ‘coding’ …
• ‘c’ in s → True
• ‘ing’ in s → True
• ‘ods’ in s → False

COMMAND LINE
ARGUMENTS

02

How to get user inputs when you run a

program.  

WAIT, DON’T WE HAVE INPUT()?
In our first lecture, we showed you how to use input() to get user inputs.
Sometimes, though, we don’t want to wait for the user. We want to know the
inputs, right when we run the file.

That is, we want something like this:

python filename.py [input 1] [input 2] [==. and so on]

READING IN INPUTS
Python actually has a way to read in those inputs as a list called
argv!

import sys # Import the relevant library

inputs = sys.argv # Use the argv list

The first element (argv[0]) is always the filename. The rest of the
list comprises the inputs as strings (separated by spaces).

Example: Let’s say you have a
file called inputs.py. What is
argv if you run

python inputs.py 1 A True

LOOPS03
Repeated actions, and sequence iteration  

BUT CAN’T I JUST COPY-PASTE?
Let’s say I want to print out the numbers 0 to 10. Here’s one way:

print(0)
print(1)
print(2)
==.
print(10)

But this takes 11 lines, and I’m lazy (you should be too!). What if there were
a way to do it in 2 lines …

THE FOR LOOP
The for loop goes through each item in an iterable (≈ sequence, for
now) one at a time, and does a piece of code for each item.

for item in seq:
Do something, where “item” is a variable you can use

Let’s convert the code from the previous slide into a for loop!

Answer:

for i in range(0, 11):
print(i)

SOME USEFUL FOR LOOPS
Do something n times:

for _ in range(n):
Do something

Go through each character in a string s:

for c in s:
Do something

A COMMON USE CASE: FILTERS
Let’s say you have a list users of tuples (name, age), and you want to just get
those that are at least 18. Store these users in a new list. How would you do this?
This process, filtering sequences, is a common use case for loops!

Hint: Use both loops and conditionals!

Answer:

adults = []
for user in users:

if user[1] == 18:
adults.append(user)

ANOTHER CASE: AGGREGATION
Let’s say you have a list of ints, and you want (for whatever reason) to find the largest
even element. This kind of problem—where you take a list and output one value—is
called aggregation, and is commonly solved with accumulator variables.

nums = ==.
Accumulator variable
largest = float(‘-inf’)
for n in nums:

if n > largest:
largest = n

Here’s the code for finding
the largest element (not
necessarily even). Can you
use this to solve our
problem?

AND ONE MORE: MAPPING
Let’s consider one last scenario: Say you have a list of temperatures in Celsius, and you want to convert
them all to Fahrenheit, storing the result in a new list. This kind of problem—where you change each
element somehow—is called mapping.

Try it out, using what you know about assigning values for lists! Tip: F = C * 9 / 5 + 32

Answer:

c = ==.
f = []
for temp in c:

f.append(temp * 9 / 5 + 32)

LIST COMPREHENSIONS
Python has some syntactic sugar (looks nicer, but is functionally pretty similar) for some of
those common operations called list comprehensions.

Use Case Normal For Loop Comprehension

Filtering new_list = []
for elem in seq:

if condition:
new_list.append(elem)

new_list = [elem for elem in seq if condition]

Mapping new_list = []
for elem in seq:

new_list.append(new_elem)

new_list = [new_elem for elem in seq]

SOME EXAMPLES
Normal For Loop Comprehension

adults = []
for user in users:

if user[1] == 18:
adults.append(user)

adults = [user for user in users if user[1] == 18]
or

adults = [(name, age) for name, age in users if age == 18]

c = ==.
f = []
for temp in c:

f.append(temp * 9 / 5 + 32)

f = [temp * 9 / 5 + 32 for temp in c]

YOUR TURN!
Given a list of non-empty string names, return a list of the indices of
names that start with the letter ‘A’ (including capitalization). For
example, [‘Harry’, ‘Adi’, ‘Travis’, ‘Annie’] → [1, 3].

01

02 Rewrite the following snippet using list comprehensions:
filtered_squares = []
for x in range(20):
 if x % 3 == 0:
 filtered_squares.append(x * x)

NESTED LOOPS
● Loops within loops … within loops … within loops …
● Let’s see an example of what this looks like (and why we

want it)

for i in range(n):

for i in range(5):

line = ‘’

for j in range(i):

line += ‘*’

print(line)

EXAMPLE: NESTED LOOP

EXAMPLE: NESTED LOOP
Output:

_

for i in range(5):

line = ‘’

for j in range(i):

line += ‘*’

print(line)

EXAMPLE: NESTED LOOP
Output:

_

*

for i in range(5):

line = ‘’

for j in range(i):

line += ‘*’

print(line)

EXAMPLE: NESTED LOOP
Output:

_

*

**

for i in range(5):

line = ‘’

for j in range(i):

line += ‘*’

print(line)

EXAMPLE: NESTED LOOP
Output:

_

*

**

for i in range(5):

line = ‘’

for j in range(i):

line += ‘*’

print(line)

EXAMPLE: NESTED LOOP
Output:

_

*

**

for i in range(5):

line = ‘’

for j in range(i):

line += ‘*’

print(line)

THE WHILE LOOP
So we’ve seen how to iterate over a sequence, but what if there’s not a particular
sequence we have in mind? For example, what if we want to keep doing something until
the user clicks on the screen?

The while loop repeats while a condition is true (i.e., until it’s false)

while [condition]:
Do something

We used a while loop previously for animation. Can you explain how it works now?

ITERATION PRACTICE
Write a script that prints out the number of digits in a
string s.

For example, for “a9Bz80d” you should output 3.

Hint: What kind of problem is taking a whole sequence
and reducing it to one value?

WORKSHEET04
Let’s try a harder problem!  

CREDITS
This presentation template is free for everyone to use thanks to the following:

SlidesCarnival for the presentation template
Pexels for the photos

HAPPY DESIGNING!

