
Anarchy in the APSP:
New Efficient and Incorrect

APSP Algorithm

Jason (Jaehyun) Koo @ Theory Lunch ‘24
MIT EECS

Definition: (Single-Source) Shortest Path

Input:

● A directed graph G = (V, E)
● Positive integer edge weights w : E

-> [n^c]
● A designated source s \in V

Output:

● A size-n table of shortest distance
to all vertices in V

(n: # of vertices, m: # of edges)

Definition: All-Pair Shortest Path

Input:

● A directed graph G = (V, E)
● Positive integer edge weights w

: E -> [n^c]
● A designated source s \in V

Output:

● An n x n table of shortest
distance from each vertices, to
each vertices.

Two Algorithms for Shortest Paths

Dijkstra’s Algorithm

● Computes the single-source shortest path in O(n log n + m) time
● Computes the all-pair shortest path in O(n^2 log n + mn) time

Floyd-Warshall Algorithm

● Computes the all-pair shortest path in O(n^3) time

Dijkstra’s algorithm is only better in sparse cases (m << n^2)

Floyd-Warshall Algorithm (The KIJ Algorithm)

D[i, j] =

● 0, if i = j
● w(i -> j) if there exists an edge i -> j in E
● infinity otherwise.

for k in range(0, n):

for i in range(0, n):

for j in range(0, n):

D[i, j] = min(D[i, j], D[i, k] + D[k, j])

Freshman’s dream? (The IJK Algorithm)

for i in range(0, n):

for j in range(0, n):

for k in range(0, n):

D[i, j] = min(D[i, j], D[i, k] + D[k, j])

Freshman’s dream? (The IJK Algorithm)

The ⭐🌈 incorrect ⭐🌈 APSP Problem

Definition. In the Incorrect all-pair shortest path
problem (wrong-APSP):

● The input is a digraph with positive integer
weights in [1, n^c],

● The output is an n x n matrix corresponding to
the resulting output of the IJK Algorithm
(incorrect Floyd-Warshall algo: ➡)

for i in range(0, n):

for j in range(0, n):

for k in range(0, n):

D[i, j] = min(D[i, j], D[i, k] + D[k, j])

Motivation

https://www.youtube.com/shorts/Je3B3AvyhyQ

Motivation

Late 19C: The invention of Jazz

1970s: The invention of Punk rock

2020s: The invention of Punk TCS??

(less motivating) Motivation

APSP Conjecture (WW10): The all-pairs
shortest paths problem can not be solved in
O(n^{3 - c}) time for any constant c > 0.

Theorem (HKM19): Iterating the IJK Algorithm
three times actually gives the correct APSP
distance matrix (like in ➡)

Truly subcubic incorrect APSP - a breakthrough!

for _ in range(0, 3):

for i in range(0, n):

for j in range(0, n):

for k in range(0, n):

D[i, j] = min(D[i, j], D[i, k] + D[k, j])

(less motivating) Motivation

(actually this is just an arxiv preprint,
but what they proved is a subset of
our result, so unless we are wrong
they are correct)

Our results: Thinking fast and wrong

In sparse graph APSP problem can be solved in quadratic time using
Dijkstra’s algorithm. The same upper bound was not known in wrong-APSP
problem, until we closed the gap:

Our results. There is an O(nm+n^2 log n) algorithm for wrong-APSP
problem.

This is n^3 in dense graph, so our result do not contradict APSP conj.

A comparison

APSP problem wrong-APSP problem

Hardness APSP-Complete APSP-Hard [HKM19]

Best algo
for dense

n^3 [FW62] n^3 (trivial alg. from defn)

Best algo
for sparse

nm + n^2 log n [FT84] n^3 (previous)
nm + n^2 log n (this work)

Cool?

Our strategy

We represent the algorithm A as a sequence of the 3-tuples.

Each tuples corresponds to a “relaxation”:

relax(i, j, k): D[i, j] = min(D[i, j], D[i, k] + D[k, j])

We say a path P = {p_0, p_1, …, p_l} is realized by A, iff:

● l = 1 and (p_0 -> p_1) ∈ E
● l > 1, there exists an entry A_i = (p_0, p_l, p_x) such that

○ {p_0, p_1, …, p_x} is realized by A_1, A_2, …, A_{i-1}
○ {p_x, p_{x+1}, …, p_l} is realized by A_1, A_2, …, A_{i-1}

Our strategy

We say a path P = {p_0, p_1, …, p_l} is realized by A, iff:

● l = 1 and (p_0 -> p_1) ∈ E
● l > 1, there exists an entry A_i = (p_0, p_l, p_x) such that

○ {p_0, p_1, …, p_x} is realized by A_1, A_2, …, A_{i-1}
○ {p_x, p_{x+1}, …, p_l} is realized by A_1, A_2, …, A_{i-1}

● What does it mean?: These are exactly the path that is considered by
algorithm A.

● Goal: Provide a succinct description of paths realized by IJK Algorithm, and
compute it efficiently with e.g. Dijkstra, using such description.

Recitation: Floyd-Warshall

We first recall the following classical and beautiful proof, which shows a
correctness of Floyd-Warshall algorithm.

Proposition. KIJ (Floyd-Warshall) Algorithm realizes all simple paths of G.

Proof.

● For a path with at most one edges, trivial.
● For a path with at least two edges, we induct on the maximum index of the

middle vertices.

Recitation: Floyd-Warshall

Let P = {p_0, p_1, …, p_l} for l >= 2:

the “middle vertices” are p_1, p_2 …, p_{l-1}.

Induction hypothesis: After iteration k = t, simple paths where all middle vertices
have index <= t are realized.

● If all middle vertices have index <= t - 1, follows from I.H
● Otherwise, let p_x = t be the unique middle vertex. p_0 … p_x are realized by

I.H, and p_x … p_l are realized by I.H. We can certainly find an entry with
(p_0, p_l, p_x = k), since in iteration k = x we try all (i, j).

Recitation: Floyd-Warshall

9 1 3 7 7 4 10

k = 7, relax(9, 10, 7)

9 1 3 7 4 10

Equivalent condition

For the IJK algorithm, there are similar arguments that can be made.

Proposition. IJK (Floyd-Warshall) Algorithm realizes all paths of G, such that all
middle vertices have smaller indices than the endpoint of the path.

(Proof follows the same outline from the KIJ algorithm.)

9

1

3

7

4

10

Equivalent condition

But that’s not the whole characterization. For example, the IJK algorithm realizes
this path: Consider the sequence (1, 4, 99), (9, 4, 1), (9, 10, 4).

9

1

99

4

10

Equivalent condition

But there is a limited degree of freedom.

This path is not realized by IJK algorithm.

9

1

99

4

10

98

Equivalent condition

By trying out some examples, we can see that each “large” vertices (k) need
sufficiently small neighbors (i, j) so that it can be soldered into the path in the
lexicographically smaller part of relaxation.

9

1
4

10

66

6 7

99

Equivalent condition

So does it mean it’s ok if they are not adjacent? But these are realizable.

9

1
4

95

66

7

99

85

75

Equivalent condition

These are not, on the other hand:

9

1
4

95

66

7

99

75
85

Equivalent condition

It’s actually quite fun to figure out what is doable and whatnot

But I will spoil your fun for sake of completeness..

Equivalent condition

Definition. An i - j path is proper if no middle vertex of index greater than min(i, j)
is adjacent.

Definition. For all i <= j, an i - j path is increasing if the index of vertices are
strictly increasing. We define decreasing path similarly for i >= j.

Theorem: A nonempty path is realized by IJK algorithm if and only if:

● i < j, and it is a concatenation of proper path and an increasing path.
● i > j, and it is a concatenation of decreasing path and a proper path.

(Proof followed by easy yet pretty satisfying induction)

Proper path

We will find, for a fixed i and all j > i, a length of proper i - j path.

Given j > i, A proper i - j path does not contain two adjacent middle vertex with
index greater than min(i, j) = i.

Proper path

We will find, for a fixed i and all j > i, a length of proper i - j path.

Given j > i, A proper i - j path does not contain two adjacent middle vertex with
index greater than min(i, j) = i.

In other words, if you are at vertex of index at least i, you cannot move to another
vertex of index at least i

UNLESS you are ending a path (because it is only about middle vertex!)

Proper path

> In other words, if you are at vertex of index at least i, you cannot move to
another vertex of index at least i

● Apply single-source shortest path algorithm, in a graph where edges
connecting two vertices of index at least i are all removed.

> UNLESS you are ending a path (because it is only about middle vertex!)

● A single last move from a path can be done freely - apply linear pass

Finding a proper path can be done in O(m + n log n) time with Dijkstra’s alg.

Append an increasing path

For each vertex j > i we know the shortest proper path from i ending at j. We need
to append a (possibly empty) increasing path from there, to obtain an even shorter
solution.

This can be done with linear-time dynamic programming:

● D[j] = (shortest path that is proper+increasing and ends at j)
○ Case 1: Take a proper path
○ Case 2: Append an edge k -> j at the back of path such that k < j. Here the cost is D[k] +

w(k->j).

Future Works & Acknowledgement

● We know that wrong-APSP is APSP-Hard, but is it APSP-complete?
○ Actually an interesting question!

● Very fast solution in special graphs?
○ Graphs with bounded treewidth / interval graphs / permutation graphs?

● Can we publish this?
○ Likely harder than the problem itself!

Acknowledgement. I would like to thank several programming contest people for
motivating this study, and an anonymous MIT alumni for helpful discussion on this
problem in an otherwise lazy saturday afternoon of New York City.

References

● On incorrect floyd-warshalls
○ https://cs.nyu.edu/~siegel/JJ10.pdf
○ https://stackoverflow.com/questions/74507878/what-is-wrong-with-my-floyd-warshall-algorithm
○ https://www.quora.com/Why-is-the-order-of-the-loops-in-Floyd-Warshall-algorithm-important-to

-its-correctness
○ https://cs.stackexchange.com/questions/9636/why-doesnt-the-floyd-warshall-algorithm-work-if-

i-put-k-in-the-innermost-loop
● https://arxiv.org/abs/1904.01210
● https://www.acmicpc.net/problem/20588

https://cs.nyu.edu/~siegel/JJ10.pdf
https://stackoverflow.com/questions/74507878/what-is-wrong-with-my-floyd-warshall-algorithm
https://www.quora.com/Why-is-the-order-of-the-loops-in-Floyd-Warshall-algorithm-important-to-its-correctness
https://www.quora.com/Why-is-the-order-of-the-loops-in-Floyd-Warshall-algorithm-important-to-its-correctness
https://cs.stackexchange.com/questions/9636/why-doesnt-the-floyd-warshall-algorithm-work-if-i-put-k-in-the-innermost-loop
https://cs.stackexchange.com/questions/9636/why-doesnt-the-floyd-warshall-algorithm-work-if-i-put-k-in-the-innermost-loop
https://arxiv.org/abs/1904.01210
https://www.acmicpc.net/problem/20588

