Anarchy in the APSP:
New Efficient and Incorrect
APSP Algorithm

Jason (Jaehyun) Koo @ Theory Lunch 24
MIT EECS

Definition: (Single-Source) Shortest Path

@ae*&,+x@.

I n l ltl Best 4Shr 3days 45days 12days
.
O | stata Center, 32 Vassar St, Cambridge, M

: ‘
e Adirected graph G = (V, E) —

e Positive integer edge weights w : E -
_> [nAC] 5] Send directions to your phone

B vial-90WandI-80 W 45hr

e Adesignated source s\inV

Output:

&

A\ Your destination is i a different time zone.

Details

B val4ow 45hr
3,005 miles

e A size-n table of shortest distance & koW
to aII VertiCeS in V Explore nearby California Institute of

Technology

(n: # of vertices, m: # of edges)

Definition: All-Pair Shortest Path

Input:

e Adirected graph G = (V, E)
e Positive integer edge weights w

M| a|b|c | d|e
al|0 |11]10!9 |15

:E'>_[nAC] _ b (110 [3 12|18
+—A-destgrated-seurees -V cilaala bt o
Output: a9 12108

e ([156|/18|17 /8 |0

e An n x n table of shortest
distance from each vertices, to
each vertices.

Two Algorithms for Shortest Paths

Dijkstra’s Algorithm

e Computes the single-source shortest path in O(n log n + m) time
e Computes the all-pair shortest path in O(n*2 log n + mn) time

Floyd-Warshall Algorithm

e Computes the all-pair shortest path in O(n”*3) time

Dijkstra’s algorithm is only better in sparse cases (m << n?2)

Floyd-Warshall Algorithm (The KIJ Algorithm)

DIi, j1=
o 0,ifi=]
e w(i->j)ifthere existsanedgei->jinE
e infinity otherwise.

for k in range(0, n):
for i in range(0, n):
for j in range(0, n):

D[i, j1 = min(D[i, j], DIi, k] + Dk, j])

Freshman’s dream? (The IJK Algorithm)

for iin range(0, n):
for j in range(0, n):
for k in range(0, n):

DIi, j] = min(D[i, jI, D[i, k] + DIk, j])

Freshman’s dream? (The IJK Algorithm)

Why doesn't the Floyd-Warshall algorithm work if | put k in the innermost loop What is wrong with my Floyd Warshall algorithm?
Asked 11 years ago Modified 2 years, 11 months ago Viewed 4k times Asked 1year, 2 months ago Modified 1year, 2 months ago Viewed 82 times
4 TheFloyd-Warshall algorithm is defined as follows: Festisred o Meta A Here is the problem link
10 for k from 1 to [V| [) Data Dumps Releases: Timeline Approach:
for i from 1 to |V| Updates and Clarification o
for j from 1 to |V| : " . .
v if dist[il [k] + dist[k][j] < dist[il[j] then) what would you like to change a My approach is to simply give every other node the chance to be an in-between node for every
dist[i][j] « dist[i][k] + dist[K][j] the moderator election process? Y) 2 pairs of vertices i and j .
[Updates to the Acceptable Use |
Why doesn't it work if | simply use (AUPIEUanuary 2024 Below is my code for Floyd Warshall algorithm:
f“f’ & f"‘;"‘ i ;°t|v|v Linked class Solution{
urf;r ;"'pmm ; lu||v| . public void shortest_distance(int[][] mat){
3 oc i - ;
if dist[i][k] + dist[k] [j] < dist[i][j] then X f pogiignatlengths
dist[i][j] « dist[i][k] + dist[k][j]
1 : . for(int i = 0; i < N; ++i){
for(int j = 0; j <N; ++ j){
In this case, the intermediate node k is iterated in the innermost loop. | expect it will make the for(int k = 9; k < N; ++k){
same comparisons, but maybe different order. Why is the result different and incorrect? Related if(mat[i] [k] != -1 && mat[k][j] != -1 && (mat[i][§] == -1 || ma"
mat[i] [j] = mat[i] [k] + mat[k][j];

Quora

8.3 Some students mistakenly transpose, in the Floyd-Warshall algorithm, the lines
Why is the order of the loops in Floyd-Warshall algorithm 15 fork « 1 ton do

important to its correctness ? .
P 16 fori <+ 1 tondo

Al rellated (33) v Sort | Recommended v 17 forj < 1tondo

Assistant - Bot S ik
i ithm s i i to read,
The order of the loops in the Floyd-Warshall algorithm is important for its correctness

becaus . 15 fori < 1 tondo

16 forj « 1 tondo

ﬁ Sumedh Gupte x 17 fork «+— 1 ton do
Researcher - 7y .
The order of loops in Floyd-Warshall algorithm is important because it determines the e

number of ties youare finding distance between twe:glven vertices: Let the transposed algorithm be run on a general graph. What paths will it consider as po.

In the correct implementation, you need to find distance between two vertices 'n' times, vertex 1 to vertex 2‘7 Describe thlS SClCCtiOI’l il’l words.
since you have to consider shortest distance among all possible hops (and permutations of

hops). So for each k(outermost iteration), you find the distance between a pair(i,j)

considering 0 to k no of hops in between.

The - (7 incorrect =~ (¢ APSP Problem

Definition. In the Incorrect all-pair shortest path
problem (wrong-APSP):

The input is a digraph with positive integer
weights in [1, n’c],

The output is an n x n matrix corresponding to
the resulting output of the IJK Algorithm

(incorrect Floyd-Warshall algo: &)

for i in range(0, n):
for jin range(0, n):
for k in range(0, n):

DI[i, j] = min(DIi, jI, DIi, k] + DIk, j])

Motivation

ta @CharlesBerthoud 753

Playing wrong notes in CLASSICAL vs JAZZ

https://www.youtube.com/shorts/Je3B3AvyhyQ

Motivation

Late 19C: The invention of Jazz 2020s: The invention of Punk TCS??

1970s: The invention of Punk rock

BeatLES

Algorithm 2 IJK algorithm

MILES B@VIS 5

1: fori=1,2,..., n do

2 for j=1,2,..., n do

3: forik = 1,204, n do

4: d[i, j] + min{d[s, j],d[s, k] + d[k, j]}
5

6

7

N
)\\'

end for
end for
end for

(less motivating) Motivation

APSP Conjecture (WW10): The all-pairs

shortest paths problem can not be solved in

_ for _in range(0, 3):
O(n™{3 - c}) time for any constant ¢ > 0.

foriin range(0, n):
for j in range(0, n):

Theorem (HKM19): Iterating the [JK Algorithm
three times actually gives the correct APSP

distance matrix (like in J)

for k in range(0, n):

DIi, j] = min(DIi, jI, D[i, k] + DLk, j])

Truly subcubic incorrect APSP - a breakthrough!

(less motivating) Motivation

Incorrect implementations of the Floyd—Warshall
algorithm give correct solutions after three repeats

Tkumi Hide
The University of Tokyo
ihide@es. a.u-tokyo.ac.jp
Soh Kumabe
The University of Tokyo
sohkuma0213@gmail.com
Takanori Maehara

RIKEN Center for Advanced Intelligence Project
takanori.maehara@riken.jp

(actually this is just an arxiv preprint,
but what they proved is a subset of

Abstract

The Floyd-Warshall algorithm is a well-known algorithm for the all-pairs short- Our reSU|t, SO UnleSS We are Wrong

est path problem that is simply implemented by triply nested loops. In this

study, we show that the incorrect implementations of the Floyd—Warshall algo-

rithm that misorder the triply nested loops give correct solutions if these are they are CO rre Ct
repeated three times.

Keywords: graph algorithm; algorithm implementation; common mistake

Our results: Thinking fast and wrong

In sparse graph APSP problem can be solved in quadratic time using
Dijkstra’s algorithm. The same upper bound was not known in wrong-APSP
problem, until we closed the gap:

Our results. There is an O(nm+n”2 log n) algorithm for wrong-APSP
problem.

This is n*3 in dense graph, so our result do not contradict APSP con,;.

A comparison

Hardness

Best algo
for dense

Best algo
for sparse

Cool?

APSP problem
APSP-Complete

N3 [FW62]

nm + n*2 log n [FT84]

wrong-APSP problem
APSP-Hard [HKM19]
n”3 (trivial alg. from defn)

n"3 (previous)
nm + n”2 log n (this work)

Our strategy

We represent the algorithm A as a sequence of the 3-tuples.
Each tuples corresponds to a “relaxation”:

relax(i, j, k): DIi, j] = min(D[i, j], D[i, k] + DIk, j])

WesayapathP={p 0,p 1, ..., p_l} is realized by A, iff:

e |=1and(p 0>p 1) EE

e |>1,thereexistsanentry A i=(p_0, p_I, p_x) such that
o {p 0,p 1,...,p x}isrealized by A 1,A 2, ..., A {i-1}
o {p_ x,p_{x+1},...,p_l}isrealized by A 1,A 2,...,A {i-1}

Our strategy

WesayapathP={p 0,p_1, ..., p_l}is realized by A, iff:

e |=1and(p 0>p 1) EE

e |>1, thereexistsanentry A i=(p_0, p_I, p_x) such that
o {p 0,p_1,...,p x}isrealizedbyA 1,A 2, ...,A {i-1}
o {p_x p_{x+1},...,p_l}isrealized by A_1,A 2, ..., A {i-1}

e What does it mean?: These are exactly the path that is considered by
algorithm A.

e Goal: Provide a succinct description of paths realized by IJK Algorithm, and
compute it efficiently with e.g. Dijkstra, using such description.

Recitation: Floyd-Warshall

We first recall the following classical and beautiful proof, which shows a
correctness of Floyd-Warshall algorithm.

Proposition. KIJ (Floyd-Warshall) Algorithm realizes all simple paths of G.
Proof.

e For a path with at most one edges, trivial.
e For a path with at least two edges, we induct on the maximum index of the
middle vertices.

Recitation: Floyd-Warshall

LetP={p O0,p 1, ..., p_ I} forl>=2:
the “middle vertices” arep 1,p 2 ..., p_{I-1}.

Induction hypothesis: After iteration k = t, simple paths where all middle vertices
have index <=t are realized.

e If all middle vertices have index <=1 -1, follows from |.H

e Otherwise, let p_x =t be the unique middle vertex. p_0 ... p_x are realized by
I.H, and p_x ... p_l are realized by |.H. We can certainly find an entry with
(p_0, p_I, p_x=K), since in iteration k = x we try all (i, j).

Recitation: Floyd-Warshall

-0 06-®

N —

k=7, relax(9, 10, 7)

Equivalent condition

For the IJK algorithm, there are similar arguments that can be made.

Proposition. |JK (Floyd-Warshall) Algorithm realizes all paths of G, such that all
middle vertices have smaller indices than the endpoint of the path.

(Proof follows the same outline from the KlJ algorithm.)

Equivalent condition

But that's not the whole characterization. For example, the 1JK algorithm realizes
this path: Consider the sequence (1, 4, 99), (9, 4, 1), (9, 10, 4).

Equivalent condition

But there is a limited degree of freedom.

This path is not realized by IJK algorithm.

Equivalent condition

By trying out some examples, we can see that each “large” vertices (k) need
sufficiently small neighbors (i, j) so that it can be soldered into the path in the
lexicographically smaller part of relaxation.

Equivalent condition

So does it mean it’s ok if they are not adjacent? But these are realizable.

Equivalent condition

These are not, on the other hand:

Equivalent condition

It's actually quite fun to figure out what is doable and whatnot

But | will spoil your fun for sake of completeness..

Equivalent condition

Definition. An i - j path is proper if no middle vertex of index greater than min(i, j)
is adjacent.

Definition. For all i <=j, an i - j path is increasing if the index of vertices are
strictly increasing. We define decreasing path similarly for i >=j.

Theorem: A nonempty path is realized by IJK algorithm if and only if:

e i<j,anditis a concatenation of proper path and an increasing path.
e i>j, anditis a concatenation of decreasing path and a proper path.

(Proof followed by easy yet pretty satisfying induction)

Proper path

We will find, for a fixed i and all j > i, a length of proper i - j path.

Given j > i, A proper i - j path does not contain two adjacent middle vertex with

index greater than min(i, j) = i.

Proper path

We will find, for a fixed i and all j > i, a length of proper i - j path.

Given j > i, A proper i - j path does not contain two adjacent middle vertex with

index greater than min(i, j) = i.

In other words, if you are at vertex of index at least i, you cannot move to another
vertex of index at least i

UNLESS you are ending a path (because it is only about middle vertex!)

Proper path
> In other words, if you are at vertex of index at least i, you cannot move to

another vertex of index at least i

e Apply single-source shortest path algorithm, in a graph where edges
connecting two vertices of index at least i are all removed.

> UNLESS you are ending a path (because it is only about middle vertex!)

e Asingle last move from a path can be done freely - apply linear pass

Finding a proper path can be done in O(m + n log n) time with Dijkstra’s alg.

Append an increasing path

For each vertex j > i we know the shortest proper path from i ending at j. We need

to append a (possibly empty) increasing path from there, to obtain an even shorter
solution.

This can be done with linear-time dynamic programming:

e D[j] = (shortest path that is proper+increasing and ends at j)
o Case 1: Take a proper path

o Case 2: Append an edge k -> | at the back of path such that k <. Here the cost is D[k] +
w(k->j).

Future Works & Acknowledgement

e \We know that wrong-APSP is APSP-Hard, but is it APSP-complete?

o Actually an interesting question!

e \ery fast solution in special graphs?
o Graphs with bounded treewidth / interval graphs / permutation graphs?

e (Can we publish this?
o Likely harder than the problem itself!

Acknowledgement. | would like to thank several programming contest people for
motivating this study, and an anonymous MIT alumni for helpful discussion on this
problem in an otherwise lazy saturday afternoon of New York City.

References

e On incorrect floyd-warshalls
o https://cs.nyu.edu/~siegel/JJ10.pdf
o https://stackoverflow.com/questions/74507878/what-is-wrong-with-my-floyd-warshall-algorithm
o https://www.quora.com/\Why-is-the-order-of-the-loops-in-Floyd-Warshall-algorithm-important-to
-its-correctness
o https://cs.stackexchange.com/questions/9636/why-doesnt-the-floyd-warshall-algorithm-work-if-
i-put-k-in-the-innermost-loop

e https://arxiv.org/abs/1904.01210
e https://www.acmicpc.net/problem/20588

https://cs.nyu.edu/~siegel/JJ10.pdf
https://stackoverflow.com/questions/74507878/what-is-wrong-with-my-floyd-warshall-algorithm
https://www.quora.com/Why-is-the-order-of-the-loops-in-Floyd-Warshall-algorithm-important-to-its-correctness
https://www.quora.com/Why-is-the-order-of-the-loops-in-Floyd-Warshall-algorithm-important-to-its-correctness
https://cs.stackexchange.com/questions/9636/why-doesnt-the-floyd-warshall-algorithm-work-if-i-put-k-in-the-innermost-loop
https://cs.stackexchange.com/questions/9636/why-doesnt-the-floyd-warshall-algorithm-work-if-i-put-k-in-the-innermost-loop
https://arxiv.org/abs/1904.01210
https://www.acmicpc.net/problem/20588

