
Dogecoin-Ethereum
Bridge
Ismael Bejarano (@CoinFabrik) - Catalina Juarros 
(@CoinFabrik) - Oscar Guindzberg



Goals Exchange Dogecoin and an ERC-20 
token back and forth in a 
decentralised manner.



Challenges

● Keep the same circulating supply of Dogecoin.
○ Don’t burn or mint for security reasons.

● Perform the exchange in a decentralised way.
○ Exchanges are centralised.

○ Atomic swap requires at least two people.



Existing solutions

● BTCRelay.
○ Only supports one-way transaction verifications.

● RSK Bridge.
○ Supports two-way operations.

○ Controlled by a federation.



More challenges

● Dogecoin uses Scrypt as its proof-of-work function.
○ EVM-based verification costs about 100M gas.

● Storing all the blocks is expensive.
○ 200USD per day, even if the bridge receives no transactions.

● Dogecoin has scripts, but it offers limited support for 
programming.
○ Adding an opcode would require a fork.



Solution!



TrueBit

Off-chain Scrypt hash verification using a challenge-response 
protocol.



TrueBit

● Scrypt hash is calculated off-chain.
● Iterative challenge:

○ Divide the problem into N steps.

○ Binary search to find the first incorrect step.

○ Execute incorrect step in the contract.

● Economic incentives to prevent attacks.
○ Each step must cover the potential response’s cost.



Superblocks

Store the Merkle root of a tree consisting of several blocks.



Superblocks

● Blocks that aren’t relevant for the 
bridge don’t need to be stored.

● Adds complexity and possible 
attacks.

● The goal is to disincentivise 
attacks.



Collateral

Mechanism similar to MakerDAO’s stable coin DAI for 
converting DogeTokens to Dogecoin.



Collateral

● Dogecoin:
○ Doesn’t support complex scripts.

○ New opcode needs a hard fork.

● Collateral:
○ Dogecoin is backed by operators.

○ Operators must deposit ether in order to cover the total amount of 

Dogecoin in the bridge.

○ Affected by Ether to Dogecoin price fluctuations.



Tools
● Truffle
● Ganache
● Travis CI
● Web3j



Truffle

● Smart contract compilation and deployment.
● Integration tests for Solidity smart contracts and Java 

agent.
● Unit tests during development.

○ We currently have over 100 unit tests.



Ganache

● Development Ethereum node.
● Automatic mining.
● Infinite balance.



Travis CI

● Test case execution in a 
clean environment.

● Execute tests on a 
branch before merging.

● Java version of web3.
● Used by ‘agents’ for 

interacting with the 
Ethereum blockchain.

Web3j



Some issues



Some issues

● Truffle
○ Sometimes it doesn’t recompile contracts:

■ Automate compilation and deployment with bash scripts.

■ Remove build directory.

■ Force recompilation: truffle compile --all.
○ Latest compiler version:

■ Edit dependencies manually.



Some issues

● Ganache
○ Slow for complex contracts.

○ Easy to create transaction collisions.

■ Transactions aren’t signed.

○ A bugged version made Travis CI fail.

■ Hardcode a working version.



Some issues

● No stack trace for debugging.
○ Use error codes instead of revert.

○ Use log0(), log1(), etc. to inspect variable state

○ New revert with reason opcode is not yet supported

■ There is still no defined protocol for interpreting reason



Some issues

● Possible ‘out of gas’ causes:
○ 32KB per transaction limit.

■ Makes it impossible to deploy very large contracts.

○ Almost any error causes ‘out of gas’ on Ganache.

■ Turn on verbose mode.

■ Test on geth development mode (PoA).



● ‘Out of gas’ solutions
○ Separate contracts according to their functionality.

■ Adds complexity and dependencies between contracts.

○ Use libraries.

■ extern functions use delegatecall.
■ internal functions are compiled inline.

■ No access to storage.

○ Use Solidity assembly.

■ Hard to debug.

○ Turn on compiler optimisation.

Some issues



That’s all!



References

● Efficiently Bridging EVM Blockchains, 

https://blog.gridplus.io/efficiently-bridging-evm-blockchains-8421504e9

ced

● A scalable verification solution for blockchains, 

https://people.cs.uchicago.edu/~teutsch/papers/truebit.pdf

● The Dai Stablecoin System, 

https://makerdao.com/whitepaper/DaiDec17WP.pdf

● Reference implementation of the decentralized Dai Stablecoin issuance 
system, https://makerdao.com/purple/

https://blog.gridplus.io/efficiently-bridging-evm-blockchains-8421504e9ced
https://blog.gridplus.io/efficiently-bridging-evm-blockchains-8421504e9ced
https://people.cs.uchicago.edu/~teutsch/papers/truebit.pdf
https://makerdao.com/whitepaper/DaiDec17WP.pdf
https://makerdao.com/purple/

