
(Represented as Rules, Tables, and Graphs)

coachantoine.blogspot.com

(Represented as Rules, Tables, and Graphs)

A function consists of:

- A set containing all the <u>input numbers</u>, called the <u>domain</u>.
- A set containing all the <u>output numbers</u>, called the <u>range</u>.
- A pairing of inputs with outputs such that each input is paired with exactly one output.

coachantoine.blogspot.com

(Represented as Rules, Tables, and Graphs)

Input	Output
0	2
1	4
2	6
3	8
4	10

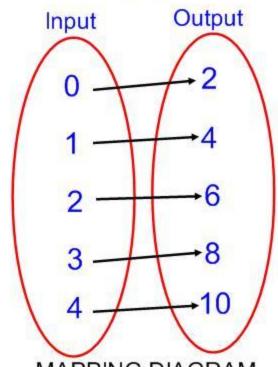
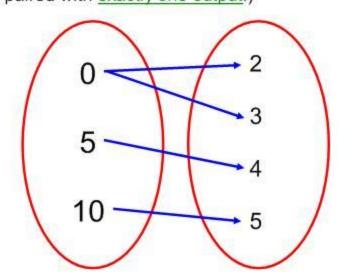


TABLE N


MAPPING DIAGRAM

(Represented as Rules, Tables, and Graphs)

Tell whether each pairing is a function.

(Remember each input is paired with exactly one output.)

input	output
0	0
1	0
4	8
6	12
9	18

coachantoine.blogspot.com

(Represented as Rules, Tables, and Graphs)

A function may be represented using a rule that relates one variable to another.

- The input variable is called the independent variable.
- The <u>output variable</u> is called the <u>dependent variable</u>, because it depends on the independent variable.

Verbal Rule	Equation	Table					
The output is	. 0	Input, x	0	1	2	3	4
2 more than the input.	y = x + 2	Output, y	2	3	4	5	6

(Represented as Rules, Tables, and Graphs)

The domain of the function y = 2x is 0, 2, 5, 7, 8. Make a table for the function, then identify the range of the function.

coachantoine.blogspot.com

(Represented as Rules, Tables, and Graphs)

The domain of the function y = 2x is 0, 2, 5, 7, 8. Make a table for the function, then identify the range of the function.

Input (x)	Rule: $y = 2x$	Output (y)
0	y = 2(0)	0
2	y = 2(2)	4
5	y = 2(5)	10
7	y = 2(7)	14
8	y = 2(8)	16

(Represented as Rules, Tables, and Graphs)

Make a table for the function, then identify the range of the function.

$$y = \frac{1}{2}x + 3$$

Domain: 4, 6, 9, 11

(Represented as Rules, Tables, and Graphs)

Make a table for the function, then identify the range of the function.

$$y = \frac{1}{2}x + 3$$

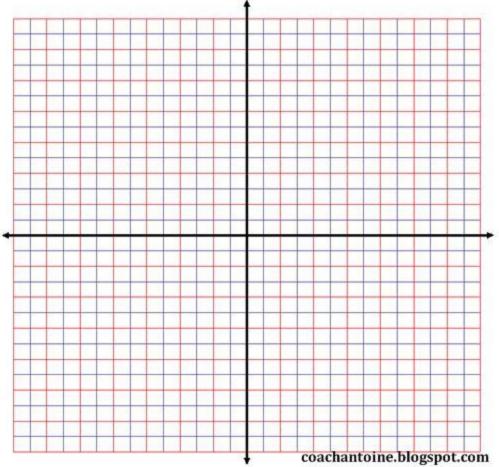
Domain: 4, 6, 9, 11

Input (x)	$y = \frac{1}{2}x + 3$	Output (y)
4	$y = \frac{1}{2}(4) + 3$	5
6	$y = \frac{1}{2}(6) + 3$	6
9	$y = \frac{1}{2}(9) + 3$	7.5
11	$y = \frac{1}{2}(11) + 3$	8.5

(Represented as Rules, Tables, and Graphs)

TO GRAPH YOUR FUNCTION:

Turn your inputs and outputs into coordinates. In the form of (x,y)


Input (x)	Rule: $y = 2x$	Output (y)
0	y = 2(0)	0
2	y = 2(2)	4
5	y = 2(5)	10
7	y = 2(7)	14
8	y = 2(8)	16

(Represented as Rules, Tables, and Graphs)

TO GRAPH YOUR FUNCTION:

Turn your inputs and outputs into coordinates. In the form of (x,y)

Input (x)	Coordinates	Output (y)
0	(0, 0)	0
2	(2, 4)	4
5	(5, 10)	10
7	(7, 14)	14
8	(8, 16)	16

HTTP://COACHANTOINE.BLOGSPOT.COM