1 of 12

Doping profile for sensor FZ290

Faeze

2 of 12

Bulk

  • Thick = 320
  • Width = 3600
  • Doping : 4.5e12

3 of 12

Siox

  • Thick : 5
  • Oxueberhang : 5

4 of 12

Sensor

  • Implant
    • Imp width = 1700
    • Imp thick = 2
    • Doping : 1e19
  • Al contact
    • AC pad
      • R: 862.5
      • L : -662.5
      • Thick: 10
      • Width : 1525
      • SiOx Thick: 0.3
    • DC pad
      • R :-692.5
      • L :-862.5
      • Thick : 10
      • Width : 170
      • SiOx thick : 0.3
      • Dcox_width : 125
      • Contact R : -715
      • Contact L : -840
  • Edox_thick : 0.7

5 of 12

Backplane

  • Implant
    • thick = 15
    • Doping : 1e19
  • Al contact
    • Thick : 10

6 of 12

Edge

  • Profile
    • Imp thick = 2
    • Imp width = 400
    • Doping : 1e19/1e16

7 of 12

Gurdring

  • Implant
    • Width = 100
    • Radius = 1000
    • Doping : 1e19
    • Positional_l : 800
  • Al Contact : GR Pad
    • R : -937.5
    • L : -1090
    • Thick : 10
    • Width : 152.5
    • Contact width : 80
    • Grox_width : 80
    • SiOx thick : 0.3

8 of 12

P Stop

  • Implant
    • Width = 6
    • Radius = 900
    • Thick = 1
    • Position L : 900
    • Doping : 5e15

9 of 12

Mesh

10 of 12

11 of 12

Until now

  • Finding sensor parameters
  • Simulation Sensor and mesh

Until the end of this week

  • Apply reverse bias voltage
  • Apply physical models
    • shockley read hall model
    • Van Overstraeten
    • Masetti model
    • Canali model

20 Farvardin

  • Transient current signal Simulation
  • Test beam

31 Farvardin

Radiation damage

Simulation

—------

Collecting data from other group's experiments and comparing with the results of our own simulation

—-----

Put the results of the simulation as a series of functions in CMSSW and finally get the linearity for the sensors exposed to radiation and compare our results with the test beam results.

12 of 12

Canali modification