MutliThreading

s S
A A A AL R AT A
| R e e L S i kit
e RS A AT 0
R N XS A
A s e S N T e T

www.btechsmartclass.com

B Introduction <«

Every java application runs with the concept of threads or multithreading

Thread is a part of a program which can execute individually

Executing multiple threads simultaneously is

Multithreading

B Introduction <«

To understand Multithreading concept we should know the following...

What is Multitasking?

What is Multithreading?

What is Concurrency?

What is Parallelism?

B Introduction <«

What is Multitasking?

It is the ability to perform multiple jobs concurrently. That is
running multiple programs concurrently

DO, RO N6 et O, -

S [H Y ! ey « ~ L 1 P - a2l v\ 7 _zsr-33l A AT o —~ o 1 1 e N | W o= = o —
."r “.' / | = =
€ B YouTube X | B Multithreading in Java P== X | & Google X/ +5 BTech Smart Class xtg ' -_ 1ng E‘M
€ C' [) www.btechsmartclass.com w e & =

F S

Dowr'>a"'s Contact Us

N

Ac

www.btechsmartclass.com/downloads.htmi

B Introduction <«

What is Concurrency?

It is the process of executing multiple processes simultaneously
on a single CPU

What is Parallelism?

It is the process of executing multiple processes simultaneously
on individual CPUs

BV Thread <A

Definition: A part of the program which can run individually

?Ub”c File Downloader(String url) | \What happens if | want to download 4 File?

Code for downloading a file - Execute the program for 4 times
: - Create 4 objects and call the method
return File: one after the other

J

The threads concept makes it easy

BV Thread <A

When a java program is executed automatically a thread is

created known as main thread by Java-Runtime system

In java, every thread is created with the help of built-in class

Thread

which is in the

java.lang
package

class CurrentThreadDemo {
public static void main(String argsl[]) {
Thread t = Thread.currentThread();
System.out.printin("Current thread: " + t);
// change the name of the thread
t.setName("My Thread");
System.out.printin("After name change: " + t);

try {
for(intn=95; n>0; n--) {
System.out.printin(n);
Thread.sleep(1000);
}
}

catch (InterruptedException e) {
System.out.printin("Main thread interrupted");

J
J
J

Creating
' Thread

Create an object of Thread class

Thread t = new Thread();
Override run() method with the code to be run by that thread

public void run(){
Code to be run by the
thread

}
Call the run() method using start() method

t . Start();

HEEP” Concept LA

Exception handling will not corrects the runtime error, but
just informs the user by providing some information about
that error.

BEPY” Rreasons 4

An exception can occur for many different reasons,
including the following....

A user has entered invalid data

A file that needs to be opened cannot be found

A network connection has been lost in the middle of
communications or the JVM has run out of memory

Physical problem like device not working, cable related problem

- Handling

Exceptions

To handle an exception in java we use the following

keywords...
1)ty

2] catch
3] finally
4] throw
5] throws _

Y Hancling <

Exceptions

To handle an exception in java we use the following
keywords...

finally
1ents which may

Y Hancling <

Exceptions

To handle an exception in java we use the following

keywords...
2] catch

The catch keyword is {d 14 ylock of
antion occurred

statements which can h- » the o)
in try block finally

Every try block must have atleast one catch block
The try block may have multiple catch blocks

Y Hancling <

Exceptions

To handle an exception in java we use the following

keywords...
(3] finally _

The finally wuru s dsed to a

block of statemh must be

execute wrestxceptlon

5 L throws

Y Hancling <

Exceptions

To handle an exception in java we use the following
keywords...

The throw msed to
throw an eplicitly.

5

thiow g <
— Keyword

import java.io.*;
class ThrowDemo{
public static void main(String args[]) {
Scanner input = new Scanner(System.in);
System.out.println(“Enter any two Integer values”);
int a = input.nextInt();
int b = input.nextInt();

Example

if(b == 0)

throw new Exception(“Can not divide!!!”);
int result = a / b;
System.out.println(“Result of a / b = ”+result);

}
catch(Exception e){

System.out.println(e);
}

Y Hancling <

Exceptions

To handle an exception in java we use the following
keywords...

UG
IIA\ AW WY o MA

class ThrowsDemo {

Example void myMethod(int n) throws IOException,ClassNotFoundException {
if(n ==1)
throw new IOException(“Message 1 !!!1”);
else
throw new ClassNotFoundException(“Message 2 !!11%);
}
}

class ThrowsDemoTest {

public static void main(String args[]) {
ThrowsDemo obj = new ThrowsDemo();

try{
obj.myMethod(1);
}

catch(Exception e){
System.out.println(e);

}

BEP” Categories A

In java there are TWO types of exceptions

Checked Exceptions

The checked exceptions are checked at compile-time

Unchecked Exceptions

The unchecked exceptions are checked at runtime

B Checked . <

Exceptions

Checked exceptions should handle the exception using
try - catch block or it should declare the exception
using throws keyword, otherwise the program will give a
compilation error.

IOEXxception
SQLEXxception
DataAccessException
ClassNotFoundException

B Checked . <

Exceptions

Example

import java.ilo.*;
class Example {

public static void main(String args[]) {
FileInputStream fis = new FileInputStream("B:/myfile.txt");

/*This constructor FileInputStream(File filename) throws FileNotFoundException */
int k;
while((k = fis.read()) != -1) {
System.out.print((char)k);
}

fis.close();
/*The method close() closes the file input stream * It throws IOException*/

B Unchecked

Exceptions

Unchecked Exceptions mostly arise due to programming
errors like accessing method of a null object, accessing
element outside an array bonding or invoking method with

illegal arguments etc,.

NullPointerException
ArraylndexOutOfBound
lllegalArgumentException
lllegalStateException

B Dshtion
Hierarchy
In java all the Exceptions are defined as Classes to handle
them. All those classes are in following hierarchy...

Throwable

Exception

\\
RunTimeException IOException SQLEXxception

NullPointerException

IndexOtOfBoundsException
NumberFormatException

BP»” Exception
H|%rarchy

L. [y
! | :
e ===
[| o
NoSechMethodizcepion
e Rl m— z
i :
x NullPointerfxcoption

. favaang i ,

Exception
— H|%rarchy

'"-.“."00.o—....o..—.....o..“...oc..“...o...“...o--.-‘...o.-.“...o...“.“.o..—....oo--—-o.o.o..“..ooon..-.....o-.“.......n..oo..ou...oaoo“.“.o..“..o.o-.“..'

| i
E g UaossCircula
| favaleny rorr——
, lllegalAccessError
: !
: IncompatibleClassChangek E
, NoClassDefFoundError MeSachFlekE
E 0 rror |
| UnsatisfiedLinkEr
- [orowebi~ NoSuchMethodiror |
W
= |
| L |
* OutOfMemoryError ’
' StackOverflowkrror !
B

;
i
:
E
;
i
:
L
i
;
|
:
E
;
:
:
;
|
:
5
:
i
:
:
.
;
;
i
:
E
;
i
:
L
i
;
:
:
5
;
:
:
;
i
.
:
:
;
i
.
E
|
:
|
|
.
:
:
:
.
:
L

B Creiting . <

Exceptions

To create your own exception types to handle situations just define a
subclass of Exception

class MyOwnException extends Exception {
public MyOwnException(String msg){
super(msg);
}

}
class EmployeeTest {

static void employeeAge(int age) throws MyOwnException{
if(age < 0)
throw new MyOwnException("Age can't be less than zero");
else
System.out.println("Input is valid!!");
}
public static void main(String[] args) {
try { employeeAge(-2); }
catch (MyOwnException e){ e.printStackTrace(); }

