
MutliThreading

Tutorial

www.btechsmartclass.com

Introduction

Every java application runs with the concept of threads or multithreading

Thread is a part of a program which can execute individually

Executing multiple threads simultaneously is

Multithreading

Introduction

To understand Multithreading concept we should know the following…

What is Multitasking?

What is Multithreading?

What is Concurrency?

What is Parallelism?

Introduction
What is Multitasking?

It is the ability to perform multiple jobs concurrently. That is
running multiple programs concurrently

Introduction
What is Multithreading?

It is referred as multiple threads which are controlled by a single program.

Every program in java can run multiple threads.

MS Word Spell Checking
Word suggestion in mobile

Playlist in MediaPlayer
Video Games

Introduction
What is Concurrency?

It is the process of executing multiple processes simultaneously
on a single CPU

What is Parallelism?

It is the process of executing multiple processes simultaneously
on individual CPUs

Thread
A part of the program which can run individuallyDefinition:

public File Downloader(String url)
{
 Code for downloading a file
 -
 -
 return File;
}

What happens if I want to download 4 File?

- Execute the program for 4 times
- Create 4 objects and call the method
 one after the other

The threads concept makes it easy

Thread
When a java program is executed automatically a thread is

created known as main thread by Java-Runtime system

In java, every thread is created with the help of built-in class

Thread
which is in the

java.lang
package

class CurrentThreadDemo {
public static void main(String args[]) {

Thread t = Thread.currentThread();
System.out.println("Current thread: " + t);
// change the name of the thread
t.setName("My Thread");
System.out.println("After name change: " + t);
try {

for(int n = 5; n > 0; n--) {
System.out.println(n);
Thread.sleep(1000);

}
}
catch (InterruptedException e) {

 System.out.println("Main thread interrupted");
}

}
}

Creating

Create an object of Thread class

Thread t = new Thread() ;

Thread

Override run() method with the code to be run by that thread

public void run(){
 Code to be run by the
 thread
 …..
}

Call the run() method using start() method

t . Start();

Concept

Exception handling will not corrects the runtime error, but
just informs the user by providing some information about
that error.

Reasons

An exception can occur for many different reasons,
including the following….

A user has entered invalid data

A file that needs to be opened cannot be found

A network connection has been lost in the middle of
communications or the JVM has run out of memory

Physical problem like device not working, cable related problem

Handling

To handle an exception in java we use the following
keywords…

try

catch

finally

throw

Exceptions

throws

1

2

3

4

5

The try keyword is used to define a
block of statements which may

generate exception

Handling

To handle an exception in java we use the following
keywords…

try

catch

finally

throw

Exceptions

throws

1

2

3

4

5

The catch keyword is used to define a block of
statements which can handle the exception occurred
in try block

Handling

To handle an exception in java we use the following
keywords…

catch

try

finally

throw

Exceptions

throws

2

1

3

4

5

Every try block must have atleast one catch block

The try block may have multiple catch blocks

The finally keyword is used to a
block of statements which must be
execute irrespective of Exception

occurance.

Handling

To handle an exception in java we use the following
keywords…

finally

try

catch

throw

Exceptions

throws

3

1

2

4

5

The throw keyword is used to
throw an exception explicitly.

Handling

To handle an exception in java we use the following
keywords…

throw

try

catch

finally

Exceptions

throws

4

1

2

3

5

throw
Keyword

Example import java.io.*;
class ThrowDemo{
 public static void main(String args[]) {
 Scanner input = new Scanner(System.in);
 System.out.println(“Enter any two Integer values”);
 int a = input.nextInt();
 int b = input.nextInt();
 try{
 if(b == 0)
 throw new Exception(“Can not divide!!!”);
 int result = a / b;
 System.out.println(“Result of a / b = ”+result);
 }
 catch(Exception e){
 System.out.println(e);
 }
 }
}

The throws keyword is used to list
the types of Exceptions that a

method might throw.

Handling

To handle an exception in java we use the following
keywords…

throws

try

catch

finally

Exceptions

throw

5

1

2

3

4

throws
Keyword

Example
class ThrowsDemo {
 void myMethod(int n) throws IOException,ClassNotFoundException {
 if(n ==1)

 throw new IOException(“Message 1 !!!”);
 else

 throw new ClassNotFoundException(“Message 2 !!!”);
 }
}
class ThrowsDemoTest {
 public static void main(String args[]) {
 ThrowsDemo obj = new ThrowsDemo();
 try{
 obj.myMethod(1);
 }
 catch(Exception e){
 System.out.println(e);
 }
 }
}

Categories

In java there are TWO types of exceptions

Checked Exceptions

Unchecked Exceptions

The checked exceptions are checked at compile-time

The unchecked exceptions are checked at runtime

Checked

Checked exceptions should handle the exception using
try - catch block or it should declare the exception
using throws keyword, otherwise the program will give a
compilation error.

Exceptions

IOException
SQLException

DataAccessException
ClassNotFoundException

Checked
Exceptions

Example

import java.io.*;
class Example {
 public static void main(String args[]) {
 FileInputStream fis = new FileInputStream("B:/myfile.txt");
 /*This constructor FileInputStream(File filename) throws FileNotFoundException */
 int k;
 while((k = fis.read()) != -1) {
 System.out.print((char)k);
 }
 fis.close();
 /*The method close() closes the file input stream * It throws IOException*/
 }
}

Unchecked

Unchecked Exceptions mostly arise due to programming
errors like accessing method of a null object, accessing
element outside an array bonding or invoking method with
illegal arguments etc,.

Exceptions

NullPointerException
ArrayIndexOutOfBound

IllegalArgumentException
IllegalStateException

Exception

In java all the Exceptions are defined as Classes to handle
them. All those classes are in following hierarchy…

Hierarchy

Throwable

Error Exception

RunTimeException IOException SQLException

NullPointerException
IndexOtOfBoundsException

NumberFormatException
…..

Exception
Hierarchy

Exception
Hierarchy

Creating
Exceptions

To create your own exception types to handle situations just define a
subclass of Exception

class MyOwnException extends Exception {
 public MyOwnException(String msg){
 super(msg);
 }
}
class EmployeeTest {
 static void employeeAge(int age) throws MyOwnException{
 if(age < 0)
 throw new MyOwnException("Age can't be less than zero");
 else
 System.out.println("Input is valid!!");
 }
 public static void main(String[] args) {
 try { employeeAge(-2); }
 catch (MyOwnException e){ e.printStackTrace(); }
 }

}

