MutliThreading

s S
A A A AL R AT A
| R e e L S i kit
e RS A AT 0
R N XS A
A s e S N T e T

www.btechsmartclass.com



B Introduction <«

Every java application runs with the concept of threads or multithreading

Thread is a part of a program which can execute individually

Executing multiple threads simultaneously is

Multithreading
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To understand Multithreading concept we should know the following...

What is Multitasking?

What is Multithreading?

What is Concurrency?

What is Parallelism?
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What is Multitasking?

It is the ability to perform multiple jobs concurrently. That is
running multiple programs concurrently
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What is Concurrency?

It is the process of executing multiple processes simultaneously
on a single CPU

What is Parallelism?

It is the process of executing multiple processes simultaneously
on individual CPUs
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Definition: A part of the program which can run individually

?Ub”c File Downloader(String url) | \What happens if | want to download 4 File?

Code for downloading a file - Execute the program for 4 times
: - Create 4 objects and call the method
return File: one after the other

J

The threads concept makes it easy
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When a java program is executed automatically a thread is

created known as main thread by Java-Runtime system

In java, every thread is created with the help of built-in class

Thread

which is in the

java.lang
package




class CurrentThreadDemo {
public static void main(String argsl[]) {
Thread t = Thread.currentThread();
System.out.printin("Current thread: " + t);
// change the name of the thread
t.setName("My Thread");
System.out.printin("After name change: " + t);

try {
for(intn=95; n>0; n--) {
System.out.printin(n);
Thread.sleep(1000);
}
}

catch (InterruptedException e) {
System.out.printin("Main thread interrupted");

J
J
J




Creating
' Thread

Create an object of Thread class

Thread t = new Thread();
Override run() method with the code to be run by that thread

public void run( ){
Code to be run by the
thread

}
Call the run( ) method using start( ) method

t . Start( );
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Exception handling will not corrects the runtime error, but
just informs the user by providing some information about
that error.
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An exception can occur for many different reasons,
including the following....

A user has entered invalid data

A file that needs to be opened cannot be found

A network connection has been lost in the middle of
communications or the JVM has run out of memory

Physical problem like device not working, cable related problem




- Handling

Exceptions

To handle an exception in java we use the following

keywords...
1)ty

2] catch
3] finally
4] throw
5] throws _
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Exceptions

To handle an exception in java we use the following
keywords...

finally
1ents which may
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Exceptions

To handle an exception in java we use the following

keywords...
2] catch

The catch keyword is {d 14 ylock of
antion occurred

statements which can h- » the o)
in try block finally

Every try block must have atleast one catch block
The try block may have multiple catch blocks
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Exceptions

To handle an exception in java we use the following

keywords...
(3] finally _

The finally wuru s dsed to a

block of statemh must be

execute wrestxceptlon

5 L throws
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Exceptions

To handle an exception in java we use the following
keywords...

The throw msed to
throw an eplicitly.

5
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— Keyword

import java.io.*;
class ThrowDemo{
public static void main(String args[]) {
Scanner input = new Scanner(System.in);
System.out.println(“Enter any two Integer values”);
int a = input.nextInt();
int b = input.nextInt();

Example

if(b == 0)

throw new Exception(“Can not divide!!!”);
int result = a / b;
System.out.println(“Result of a / b = ”+result);

}
catch(Exception e){

System.out.println(e);
}
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Exceptions

To handle an exception in java we use the following
keywords...
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class ThrowsDemo {

Example void myMethod(int n) throws IOException,ClassNotFoundException {
if(n ==1)
throw new IOException(“Message 1 !!!1”);
else
throw new ClassNotFoundException(“Message 2 !!11%);
}
}

class ThrowsDemoTest {

public static void main(String args[]) {
ThrowsDemo obj = new ThrowsDemo();

try{
obj.myMethod(1);
}

catch(Exception e){
System.out.println(e);

}



BEP” Categories A

In java there are TWO types of exceptions

Checked Exceptions

The checked exceptions are checked at compile-time

Unchecked Exceptions

The unchecked exceptions are checked at runtime
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Exceptions

Checked exceptions should handle the exception using
try - catch block or it should declare the exception
using throws keyword, otherwise the program will give a
compilation error.

IOEXxception
SQLEXxception
DataAccessException
ClassNotFoundException
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Exceptions

Example

import java.ilo.*;
class Example {

public static void main(String args[]) {
FileInputStream fis = new FileInputStream("B:/myfile.txt");

/*This constructor FileInputStream(File filename) throws FileNotFoundException */
int k;
while(( k = fis.read() ) != -1) {
System.out.print((char)k);
}

fis.close();
/*The method close() closes the file input stream * It throws IOException*/



B Unchecked

Exceptions

Unchecked Exceptions mostly arise due to programming
errors like accessing method of a null object, accessing
element outside an array bonding or invoking method with

illegal arguments etc,.

NullPointerException
ArraylndexOutOfBound
lllegalArgumentException
lllegalStateException



B Dshtion
Hierarchy
In java all the Exceptions are defined as Classes to handle
them. All those classes are in following hierarchy...

Throwable

Exception

\\
RunTimeException IOException SQLEXxception

NullPointerException

IndexOtOfBoundsException
NumberFormatException
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Exceptions

To create your own exception types to handle situations just define a
subclass of Exception



class MyOwnException extends Exception {
public MyOwnException(String msg){
super(msg);
}

}
class EmployeeTest {

static void employeeAge(int age) throws MyOwnException{
if(age < 0)
throw new MyOwnException("Age can't be less than zero");
else
System.out.println("Input is valid!!");
}
public static void main(String[] args) {
try { employeeAge(-2); }
catch (MyOwnException e){ e.printStackTrace(); }



