ARTIFACT: AI-Driven Optimization of Accelerator Systems
Ivan Knežević, Andrew Mistry; [Sabina Appel, Nico Madysa]
GSI Helmholtzzentrum für Schwerionenforschung GmbH
The need
Based on slides from A. Ghribi https://aghribi1-presentation-20230911-artifact.docs.cern.ch/pres_artifact_20240305_tiara.html
However:
The challenge is this: we must transform how we collaborate and work together.
Accelerators face quasi-industrial challenges in terms of operation and reliability, making it essential to adopt the right approach:
GSI Helmholtzzentrum für Schwerionenforschung GmbH
How can AI help?
How do we unlock the use of AI?
GSI Helmholtzzentrum für Schwerionenforschung GmbH
ARTIFACT: ARTificial Intelligence For Accelerators, user Communities and associated Technologies
ARTIFACT
AI Algorithms
Data Platform
Outreach and Knowledge Transfer
AI Guidelines
Network
HORIZON-INFRA-2024-TECH-01
Next generation of scientific instrumentation, tools, methods, and advanced
digital solutions for RIs (2024)
GSI Helmholtzzentrum für Schwerionenforschung GmbH
The ARTIFACT Network
GSI Helmholtzzentrum für Schwerionenforschung GmbH
State of the art
Despite all the success stories, there are serious locks that prevent making global impact in the community !
GSI Helmholtzzentrum für Schwerionenforschung GmbH
Example: Surrogate Models for Particle Accelerator
Multilayer Perception as a surrogate model of a Linac
Neural-Network-based Surrogate Simulator for Particle Accelerator with High Dimensional Control Settings. H. Guler , C. Bruni, J. Cohen, M. Sebag
Multi Layer Perceptron
GSI Helmholtzzentrum für Schwerionenforschung GmbH
Example: Surrogate Models for Particle Accelerator
Neural-Network-based Surrogate Simulator for Particle Accelerator with High Dimensional Control Settings. H. Guler , C. Bruni, J. Cohen, M. Sebag
LinacNet with 6 modules corresponding to 6 diagnostic stations on the Linac
GSI Helmholtzzentrum für Schwerionenforschung GmbH
Example: Surrogate Models for Particle Accelerator
Neural-Network-based Surrogate Simulator for Particle Accelerator with High Dimensional Control Settings. H. Guler , C. Bruni, J. Cohen, M. Sebag
MAE of the position. The accuracy of the Beam position monitors is ∼ 100μm
MAE of the charge. The accuracy of the Integrated Current Transformer is ∼ 10pC
GSI Helmholtzzentrum für Schwerionenforschung GmbH
Methodology
GSI Helmholtzzentrum für Schwerionenforschung GmbH
F.A.I.R. data principles and AI
11
Findable�Centrally orchestrated storage and access of data essential to enable data/software to be findable.�Usage of Persistent IDentifiers (PID e.g. DOI) -> Guarantee access to Digital Research Objects.
Image credit: ARDC licensed under a Creative Commons Attribution 4.0 International License
Accessible
Data and software produced/dedicated for F.A.I.R communities and publications centrally stored
Common & “user-friendly” interface to store and retrieve data
Interoperable
Common metadata formats
F.A.I.R-produced data operable with other datasets
Reusable� Ensure (as reasonably as possible) data stored long term� Metadata should be retained indefinitely
AI and the F.A.I.R. principles are mutually beneficial:
- AI algorithms thrive on accessible, interoperable, and reusable data.
- The application of AI can enhance data discoverability, improve metadata accuracy, and facilitate large-scale analysis
GSI Helmholtzzentrum für Schwerionenforschung GmbH
Methodology
GSI Helmholtzzentrum für Schwerionenforschung GmbH
Methodology
GSI Helmholtzzentrum für Schwerionenforschung GmbH
Implementation
GSI Helmholtzzentrum für Schwerionenforschung GmbH
Linking F.A.I.R. Data and AI
GSI Helmholtzzentrum für Schwerionenforschung GmbH
How can GSI/FAIR benefit?
E.g. Super FRS
GSI Helmholtzzentrum für Schwerionenforschung GmbH
ARTIFACT Future
Upcoming:
Questions?
Contact us
GSI Helmholtzzentrum für Schwerionenforschung GmbH