1 of 17

ARTIFACT: AI-Driven Optimization of Accelerator Systems

Ivan Knežević, Andrew Mistry; [Sabina Appel, Nico Madysa]

GSI Helmholtzzentrum für Schwerionenforschung GmbH

2 of 17

The need

Based on slides from A. Ghribi https://aghribi1-presentation-20230911-artifact.docs.cern.ch/pres_artifact_20240305_tiara.html

However:

  • We spend hundreds of hours on tuning, repairs, and maintenance.
  • These tasks only grow more complex as technology, machines, and demands evolve.
  • Fortunately, we have tools to keep pace with the rapid advancements in accelerator research and user needs—and even to lead.�

The challenge is this: we must transform how we collaborate and work together.

Accelerators face quasi-industrial challenges in terms of operation and reliability, making it essential to adopt the right approach:

  • Enhancing beam performance
  • Considering environmental impacts
  • Ensuring societal benefits
  • Starting from the design phase and continuing throughout the machine's lifetime

GSI Helmholtzzentrum für Schwerionenforschung GmbH

3 of 17

How can AI help?

How do we unlock the use of AI?

  • Operation and reliability ;
  • Detecting, preventing anomalies ;
  • Optimising beam time ;
  • Frugal, complex physics simulation ;
  • Developing improved models.

  • Bringing the missing piece of FAIRness in data, methods, and tools in ML for research infrastructure
  • Building on existing knowledge and experience

GSI Helmholtzzentrum für Schwerionenforschung GmbH

4 of 17

ARTIFACT: ARTificial Intelligence For Accelerators, user Communities and associated Technologies

ARTIFACT

AI Algorithms

Data Platform

Outreach and Knowledge Transfer

AI Guidelines

Network

HORIZON-INFRA-2024-TECH-01

Next generation of scientific instrumentation, tools, methods, and advanced

digital solutions for RIs (2024)

GSI Helmholtzzentrum für Schwerionenforschung GmbH

5 of 17

The ARTIFACT Network

GSI Helmholtzzentrum für Schwerionenforschung GmbH

6 of 17

State of the art

Despite all the success stories, there are serious locks that prevent making global impact in the community !

GSI Helmholtzzentrum für Schwerionenforschung GmbH

7 of 17

Example: Surrogate Models for Particle Accelerator

Multilayer Perception as a surrogate model of a Linac

Neural-Network-based Surrogate Simulator for Particle Accelerator with High Dimensional Control Settings. H. Guler , C. Bruni, J. Cohen, M. Sebag

Multi Layer Perceptron

  • Stack all inputs and outputs
  • 10k simulations sampling A and B
  • Minimization of the L2 loss

GSI Helmholtzzentrum für Schwerionenforschung GmbH

8 of 17

Example: Surrogate Models for Particle Accelerator

Neural-Network-based Surrogate Simulator for Particle Accelerator with High Dimensional Control Settings. H. Guler , C. Bruni, J. Cohen, M. Sebag

LinacNet with 6 modules corresponding to 6 diagnostic stations on the Linac

  • Split input and output according to their position in the Linac
  • Neural Network Architecture reflecting a Linac architecture
  • Each Module models one Diagnostic (could be real or virtual)

GSI Helmholtzzentrum für Schwerionenforschung GmbH

9 of 17

Example: Surrogate Models for Particle Accelerator

Neural-Network-based Surrogate Simulator for Particle Accelerator with High Dimensional Control Settings. H. Guler , C. Bruni, J. Cohen, M. Sebag

MAE of the position. The accuracy of the Beam position monitors is ∼ 100μm

MAE of the charge. The accuracy of the Integrated Current Transformer is ∼ 10pC

GSI Helmholtzzentrum für Schwerionenforschung GmbH

10 of 17

Methodology

GSI Helmholtzzentrum für Schwerionenforschung GmbH

11 of 17

F.A.I.R. data principles and AI

11

Findable�Centrally orchestrated storage and access of data essential to enable data/software to be findable.�Usage of Persistent IDentifiers (PID e.g. DOI) -> Guarantee access to Digital Research Objects.

Accessible

Data and software produced/dedicated for F.A.I.R communities and publications centrally stored

Common & “user-friendly” interface to store and retrieve data

Interoperable

Common metadata formats

F.A.I.R-produced data operable with other datasets

Reusable� Ensure (as reasonably as possible) data stored long term� Metadata should be retained indefinitely

AI and the F.A.I.R. principles are mutually beneficial:

- AI algorithms thrive on accessible, interoperable, and reusable data.

- The application of AI can enhance data discoverability, improve metadata accuracy, and facilitate large-scale analysis

GSI Helmholtzzentrum für Schwerionenforschung GmbH

12 of 17

Methodology

GSI Helmholtzzentrum für Schwerionenforschung GmbH

13 of 17

Methodology

GSI Helmholtzzentrum für Schwerionenforschung GmbH

14 of 17

Implementation

GSI Helmholtzzentrum für Schwerionenforschung GmbH

15 of 17

Linking F.A.I.R. Data and AI

GSI Helmholtzzentrum für Schwerionenforschung GmbH

16 of 17

How can GSI/FAIR benefit?

  • Need to deliver beams of different rigidity, ion mass and ion charge
  • 2nd and higher order effects
  • Multiple challenges
    • hysteresis in the dipoles
    • high number of objectives to be met at the same time
    • “cocktail beams”

E.g. Super FRS

  • Machine Learning Software framework to automate setup procedure (see talk by S. Pietri)
  • ARTIFACT Networking and synergies with partners

GSI Helmholtzzentrum für Schwerionenforschung GmbH

17 of 17

ARTIFACT Future

  • ARTIFACT: ARTificial Intelligence For Accelerators, user Communities and associated Technologies

Upcoming:

  • Structure several coordinated R&D programs
  • Give recommendations to research infrastructures and funding agencies
  • Propose and update a yearly coordinated research strategy (internal network)
  • Give recommendations at external networks (e.g. European strategy for particle physics)

Questions?

Contact us

  • open-science@gsi.de

GSI Helmholtzzentrum für Schwerionenforschung GmbH