1 of 3

Solved Example

B

A

M

L

C

BL and CM are medians of a triangle ABC right angled at A. Prove that 4 (BL2 + CM2) = 5 BC2.

Sol:

BC2

=

AB2

+

AC2

(Pythagoras Theorem)

……(2)

In ΔABL,

BL2

=

AL2

+

AB2

BL2

In ΔABC,

=

AC

2

+

AB2

….[From (1)]

(

)

2

CL

= LA

AM

= BM

}

[BL and CM are medians

of a ΔABC]

……(1)

A = 900

(Pythagoras Theorem)

A = 900

1

2

CA

=

1

2

AB

=

2 of 3

B

A

M

L

C

BL and CM are medians of a triangle ABC right angled at A. Prove that 4 (BL2 + CM2) = 5 BC2.

Sol:

BL2

=

AC2

4

+

AB2

4 BL2

=

AC2

+

4 AB2

……(3)

Solved Example

CM2

=

AB2

4

+

AC2

4 CM2

=

4 AC2

+

AB2

……(4)

In ΔCMA,

CM2

=

AC2

+

AM2

CM2

=

AB

2

+

[From……(1)]

(

)

2

AC2

A = 900

CL

= LA

AM

= BM

1

2

CA

=

1

2

AB

=

3 of 3

B

A

M

L

C

BL and CM are medians of a triangle ABC right angled at A. Prove that 4 (BL2 + CM2) = 5 BC2.

Sol:

4BL2

=

AC2

+

4 AB2

……(3)

4CM2

=

4 AC2

+

AB2

……(4)

4 (BL2

=

5 (AC2

+

AB2)

+

CM2)

4 (BL2

=

5

BC2

+

CM2)

[From (1)]

4 BL2

=

AC2

+ 4AB2

+

4CM2

+ 4AB2

+ 4AC2

+ 4AB2

(Adding (3) and (4), we have)

Solved Example

CL

= LA

AM

= BM

1

2

CA

=

1

2

AB

=