Multilingual Representation for Cross Language NLP

Mentors: Pallika Kanani, Michael Wick Members: Daniel Thiyagu, Shamya Karumbaiah, Nitin Kishore

Motivation

Introduction

- Motivation Unavailability of training data in all languages for cross-language NLP
- Goal Train multilingual word embeddings usable for NLP tasks without retraining in each new language
- Problem Generalize Multi lingual Word Embeddings and target various NLP Problems like NER, Sentiment
- Approach Artificial Code Switching

What is ACS ?

Artificial Code Switching

Example:

I have a blue car

I have un blue car

I have un blue gunda

I have a bleu car

Why is ACS useful?

Distributional Semantics

Similar Word Vectors:

a, un

blue, bleu

car,gunda

Expectations of ACS

vec("king") - vec("man")+ vec("woman") ≈ vec("queen")

 $vec("roi") - vec("homme") + vec("femme") \approx vec("reine")$

 $vec("roi") - vec("hombre") + vec("woman") \approx vec("reine")$

Why not just translate entire corpus ?

	And
Fr	Anne Anne Anne Anne Anne Anne Anne Anne

(a) Bilingal co-oc matrix

(b) ACS co-oc matrix.

Word Embeddings ?

CBOW : Works well on Syntactic

Skip Gram : Works well on Semantic

Statistics

Training multilingual corpus : CBOW

Languages : French, Italian, English, Spanish

DataSet size: 9GB of Articles on Wikipedia

Factorie Toolkit for training word embeddings

Intrinsic Evaluation

Word2Vec QUESTIONS-			Evaluating E
WORDS [ENGLISH]			100
CATEGORIES	English	English (Reduced)	80
capital-common-countries	79.28	78.61	acy
capital-world	69.18	64.87	60 -
currency	1.81	1.81	d Y₽
city-in-state	24.45	19.85	oler 40 -
family	79.47	76.85	ord
gram1-adjective-to-adverb	21.63	22.62	≥ 20 -
gram2-opposite	46.61	44.36	
gram3-comparative	89.36	87.64	
gram4-superlative	75.32	73.46	acy
gram5-present-participle	70.60	68.51	ount vccur
gram6-nationality-adjective	92.49	90.16	on-o
gram7-past-tense	64.29	62.26	mmc ow-le
gram8-plural	70.49	65.32	al-co apita
gram9-plural-verbs	77.03	78.30	capit
TOTAL	65.52	62.58	v

Conclusion

- Certain pairs of languages are better at generalizing (Spanish - Italian)
- ACS performs poorly multiple sweeps of code switching needed
- Adding more languages for embedding training generally seems to help
- Adding more languages to classifier training has mixed results

Future Work

- Improve ACS (word sense disambiguation, evaluation with concept cosine similarity, phrase level switch)
- ACS hyper parameter sweep (switch threshold)
- Test performance and generalizability (evaluation on other NLP tasks, new languages)
- Improve evaluation task approach (phrase-level/ document-level features, better algorithms)

Questions ?

