1 of 86

Physical AI via�Hierarchical Decision Processes

Yihao Liu

December 12, 2025

2 of 86

Hierarchical Decision Processes

2

3 of 86

Recent Trends

3

  • Reinforcement Learning
    • Often seen in navigation and locomotion

RL in IsaacLab [1]

IL Demonstration Trajectories (Sim) [2]

VLA (Nvidia GR00T) Synthetic and Teleop Data [3]

  • Imitation Learning
    • Often seen in manipulation
  • Vision-Language-Action (VLA)

[1] Internship at Astera Institute

[2] Mu, T., Liu, Y., & Armand, M. (2025). Look Before You Leap: Using Serialized State Machine for Language Conditioned Robotic Manipulation. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[3] Bjorck, J., Castañeda, F., Cherniadev, N., Da, X., Ding, R., Fan, L., ... & Zhu, Y. (2025). Gr00t n1: An open foundation model for generalist humanoid robots. arXiv preprint arXiv:2503.14734.

4 of 86

Recent Trends

4

Question 1. Will the emergent behavior happen like in Large Language Models (LLM)?

Question 2. Is the reactive, reflex-like behavior sufficient?

Ganguli, D., Hernandez, D., Lovitt, L., Askell, A., Bai, Y., Chen, A., ... & Clark, J. (2022, June). Predictability and surprise in large generative models. In Proceedings of the 2022 ACM conference on fairness, accountability, and transparency (pp. 1747-1764).

5 of 86

Scaling Law

5

  • Question 1. Will the emergent behavior happen like in LLMs, given the current trend?
    • No yet clear

  • “Action” datasets are relatively tiny and costly
    • Text (LLMs) – Trillions of tokens
    • Vision (VLMs 1) – Billions of images
    • Action (VLAs 2) – Millions of trajectories

1 Vision-Language Models

2 Vision-Language-Action Models

6 of 86

Scaling Law

6

1 Vision-Language Models

2 Vision-Language-Action Models

  • Question 1. Will the emergent behavior happen like in LLMs, given the current trend?
    • No yet clear

  • “Action” datasets are relatively tiny and costly
    • Text (LLMs) – Trillions of tokens
    • Vision (VLMs 1) – Billions of images
    • Action (VLAs 2) – Millions of trajectories

7 of 86

Models’ Characteristics – Imitation Learning

7

[1] Zhao, T. Z., Kumar, V., Levine, S., & Finn, C. (2023). Learning fine-grained bimanual manipulation with low-cost hardware. arXiv preprint arXiv:2304.13705.

[2] Chi, C., Xu, Z., Feng, S., Cousineau, E., Du, Y., Burchfiel, B., Tedrake, R., & Song, S. (2025). Diffusion policy: Visuomotor policy learning via action diffusion. The International Journal of Robotics Research, 44(10-11), 1684-1704.

Action Chunking Transformer [1]

Diffusion Policy [2]

Question 2. Is the reactive, reflex-like behavior sufficient?

  • No, it is not sufficient

”Scoop Raisins into Bowl”

”Scoop Pretzels into Bowl”

8 of 86

Models’ Characteristics – Imitation Learning

8

Action Chunking Transformer [1]

Diffusion Policy [2]

[1] Zhao, T. Z., Kumar, V., Levine, S., & Finn, C. (2023). Learning fine-grained bimanual manipulation with low-cost hardware. arXiv preprint arXiv:2304.13705.

[2] Chi, C., Xu, Z., Feng, S., Cousineau, E., Du, Y., Burchfiel, B., Tedrake, R., & Song, S. (2025). Diffusion policy: Visuomotor policy learning via action diffusion. The International Journal of Robotics Research, 44(10-11), 1684-1704.

Both are sequence-to-sequence policies

Question 2. Is the reactive, reflex-like behavior sufficient?

Images

Encoder

Robot Action

Encoder

Latent Vector

Decoder

Future Robot Action

9 of 86

Models’ Characteristics – VLA Models

9

[1] Bjorck, J., Castañeda, F., Cherniadev, N., Da, X., Ding, R., Fan, L., ... & Zhu, Y. (2025). Gr00t n1: An open foundation model for generalist humanoid robots. arXiv preprint arXiv:2503.14734.

[2] Chi, C., Xu, Z., Feng, S., Cousineau, E., Du, Y., Burchfiel, B., Tedrake, R., & Song, S. (2025). Diffusion policy: Visuomotor policy learning via action diffusion. The International Journal of Robotics Research, 44(10-11), 1684-1704.

[3] Physical Intelligence. (2025). π_{0.5}: a Vision-Language-Action Model with Open-World Generalization. arXiv preprint arXiv:2504.16054

GR00T N1 [1], SmolVLA [2], pi0.5 [3]

Question 2. Is the reactive, reflex-like behavior sufficient?

  • No, it is not sufficient

Robot Action

Encoder

Latent Vector

Decoder

Future Robot Action

Pretrained Vision-Language Encoder

Images

pi0.5

“Put Green Pepper into Pot”

All are reactive visuomotor policies with some learned implicit planning, and still struggle on long-horizon tasks

10 of 86

  • Two-Alternative Cue-Delay-Choice (2ACDC) Experiment [1]
  • Animals can use tiny data (post-training) to perform long-horizon tasks

10

How Animals Learn to Act and Decide

[1] Sun, W., Winnubst, J., Natrajan, M., Lai, C., Kajikawa, K., Bast, A., ... & Spruston, N. (2025). Learning produces an orthogonalized state machine in the hippocampus. Nature, 640(8057), 165-175.

11 of 86

“State Cells” in Hippocampus

11

Sun, W., Winnubst, J., Natrajan, M., Lai, C., Kajikawa, K., Bast, A., ... & Spruston, N. (2025). Learning produces an orthogonalized state machine in the hippocampus. Nature, 640(8057), 165-175.

12 of 86

“State Cells” in Hippocampus

12

Sun, W., Winnubst, J., Natrajan, M., Lai, C., Kajikawa, K., Bast, A., ... & Spruston, N. (2025). Learning produces an orthogonalized state machine in the hippocampus. Nature, 640(8057), 165-175.

“Learning produces an orthogonalized state machine in the hippocampus”

13 of 86

Two Layers�Formalism

13

14 of 86

Two Layers

14

15 of 86

Two Layers

15

16 of 86

Two Layers

16

17 of 86

States and Transitions

17

Markovian

18 of 86

18

State machine is a special case of “decision processes” using a tuple

  • Nodes as states and edges as transitions

Other frameworks may include

  • Markov Decision Processes (MDP)
  • Semi-Markov Decision Processes
  • Symbolic planners
  • And a lot more

Different state spaces and time spaces

  • State: symbolic, discrete, continuous
  • Time: discrete, continuous

We could define S to be a hybrid by Cartesian product

19 of 86

An Intuitive Example using Finite State Machines

19

  • For a long-horizon task, we need
    • States
    • Actions
    • Transitions

[1] Mu, T., Liu, Y. & Armand, M. (2025). Look Before You Leap: Using Serialized State Machine for Language Conditioned Robotic Manipulation. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[2] Liu, Y., & Armand, M. (2024). A roadmap towards automated and regulated robotic systems. arXiv preprint arXiv:2403.14049.

20 of 86

An Intuitive Example using Finite State Machines

20

[1] Mu, T., Liu, Y. & Armand, M. (2025). Look Before You Leap: Using Serialized State Machine for Language Conditioned Robotic Manipulation. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[2] Liu, Y., & Armand, M. (2024). A roadmap towards automated and regulated robotic systems. arXiv preprint arXiv:2403.14049.

  • Where do we get the states, action, and transitions?

  • Try this: Trusting an LLM as an Oracle

Text

Executables

Agent

Input to Agent:

Task Description

State Constraints

Operation Constraints

21 of 86

An Intuitive Example using Finite State Machines

21

[1] Mu, T., Liu, Y. & Armand, M. (2025). Look Before You Leap: Using Serialized State Machine for Language Conditioned Robotic Manipulation. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[2] Liu, Y., & Armand, M. (2024). A roadmap towards automated and regulated robotic systems. arXiv preprint arXiv:2403.14049.

  • A serialization method to convert between plans and texts

  • State Machine Serialization Language (SMSL)
    • JSON files
    • readable by both human and machines

22 of 86

22

Large�Language

Model

Sim Task Demonstrations [1], [2]

Robot Models

Generate

Scripts

Imitation

Learning

LLMs

What About the Skill Library?

Generating Robotic Tasks for Imitation Learning via LLM in the Literature

[1] Shridhar et al. "Cliport: What and where pathways for robotic manipulation." Conference on robot learning. PMLR, 2022.

[2] Wang et al. "Gensim: Generating robotic simulation tasks via large language models." arXiv:2310.01361 2023.

23 of 86

Challenges

23

Generating Robotic Tasks for Imitation Learning via LLM in the Literature

[1] Shridhar et al. "Cliport: What and where pathways for robotic manipulation." Conference on robot learning. PMLR, 2022.

[2] Wang et al. "Gensim: Generating robotic simulation tasks via large language models." arXiv:2310.01361 2023.

Handling state-dependent, long-horizon tasks is particularly challenging

24 of 86

Key Insight: Utilize FSM as a Planner and to Structure Demonstrations

24

[1] Mu, T., Liu, Y. & Armand, M. (2025). Look Before You Leap: Using Serialized State Machine for Language Conditioned Robotic Manipulation. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[2] Liu, Y., & Armand, M. (2024). A roadmap towards automated and regulated robotic systems. arXiv preprint arXiv:2403.14049.

25 of 86

Key Insight: Utilize FSM as a Planner and to Structure Demonstrations

25

[1] Mu, T., Liu, Y. & Armand, M. (2025). Look Before You Leap: Using Serialized State Machine for Language Conditioned Robotic Manipulation. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[2] Liu, Y., & Armand, M. (2024). A roadmap towards automated and regulated robotic systems. arXiv preprint arXiv:2403.14049.

Experiments

Hanoi Tower Task

River Crossing Task

Chess Task

26 of 86

Key Insight: Utilize FSM as a Planner and to Structure Demonstrations

26

[1] Mu, T., Liu, Y. & Armand, M. (2025). Look Before You Leap: Using Serialized State Machine for Language Conditioned Robotic Manipulation. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[2] Liu, Y., & Armand, M. (2024). A roadmap towards automated and regulated robotic systems. arXiv preprint arXiv:2403.14049.

Experiments

27 of 86

  • As the complexity increases, both LLMs or Reasoning LLMs fail

27

[1] Shojaee, P., Mirzadeh, I., Alizadeh, K., Horton, M., Bengio, S., & Farajtabar, M. (2025). The illusion of thinking: Understanding the strengths and limitations of reasoning models via the lens of problem complexity. arXiv preprint arXiv:2506.06941.

28 of 86

Architecture��Generalize from closed “finite” states to open space

28

to Handle Complexity

29 of 86

An Architecture to Handle Complexity

29

SMSL – enumerative

  • Tree search over a known graph

Symbolic Planning – factored

  • Open exploration with a known set of skills

Conceptual frameworks

  • Linear Temporal Logic (LTL)
    • “always avoid X”, “eventually do Y”, “do X before Y”
  • Stanford Research Institute Problem Solver (STRIPS)

30 of 86

Handling Complexity by Open Action and Hierarchy

30

31 of 86

Handling Complexity by Open Action and Hierarchy

31

Abstraction

Concretization

32 of 86

Handling Complexity by Open Action and Hierarchy

32

Abstraction

Concretization

33 of 86

Pipeline

33

  1. Sensing -> Estimation

  • Labeling -> Symbolic Update

  • Nominal Planning -> High-Level Action

  • Refinement to Options -> Skills

  • Dispatch and Execution

  • Monitoring and Failure Detection

  • Recovery Selection and Execution

  • Return to Nominal Plan

34 of 86

Overall Architecture

34

35 of 86

Symbolic Components

35

  • Planner
  • Visualizer
  • Predictor
  • Estimator

36 of 86

Symbolic Planner

36

Inputs: Current S,

Goal G,

Option Library A

Outputs: Symbolic Plan [a_0, …, a_{K-1}]

Mu, T., Liu, Y., & Armand, M. (2025). Look Before You Leap: Using Serialized State Machine for Language Conditioned Robotic Manipulation. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

37 of 86

Symbolic Planner

37

  1. Oracle-Guided
  2. Human-Specified
  3. Learning-Based

Mu, T., Liu, Y., & Armand, M. (2025). Look Before You Leap: Using Serialized State Machine for Language Conditioned Robotic Manipulation. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

38 of 86

Symbolic Planner

38

  1. Oracle-Guided
  2. Human-Specified
  3. Learning-Based

Liu, Y., Kheradmand, A., & Armand, M. (2023). Toward process controlled medical robotic system. arXiv preprint arXiv:2308.05809.

39 of 86

Symbolic Planner

39

  1. Oracle-Guided
  2. Human-Specified
  3. Learning-Based

Liu, Y., Kheradmand, A., & Armand, M. (2023). Toward process controlled medical robotic system. arXiv preprint arXiv:2308.05809.

40 of 86

Symbolic Planner

40

  1. Oracle-Guided
  2. Human-Specified
  3. Learning-Based

Liu, Y., Kheradmand, A., & Armand, M. (2023). Toward process controlled medical robotic system. arXiv preprint arXiv:2308.05809.

41 of 86

Symbolic Planner

41

  1. Oracle-Guided
  2. Human-Specified
  3. Learning-Based

Liu, W., Chen, G., Hsu, J., Mao, J., & Wu, J. (2024). Learning planning abstractions from language. ICLR.

42 of 86

Symbolic Visualizer

42

43 of 86

Symbolic Visualizer

43

Mu, T., Liu, Y., & Armand, M. (2025). Look Before You Leap: Using Serialized State Machine for Language Conditioned Robotic Manipulation. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

44 of 86

Symbolic Visualizer

44

Mu, T., Liu, Y., & Armand, M. (2025). Look Before You Leap: Using Serialized State Machine for Language Conditioned Robotic Manipulation. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

45 of 86

Symbolic Predictor

45

Liu, W., Chen, G., Hsu, J., Mao, J., & Wu, J. (2024). Learning planning abstractions from language. ICLR.

Silver, T., Chitnis, R., Tenenbaum, J., Kaelbling, L. P., & Lozano-Pérez, T. (2021, September). Learning symbolic operators for task and motion planning. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 3182-3189). IEEE.

46 of 86

Symbolic Estimator

46

47 of 86

Symbolic Estimator

47

Liu., Y. Unpublished work.

48 of 86

Symbolic Components

48

  • Planner
  • Visualizer
  • Predictor
  • Estimator

49 of 86

49

  • Estimator (and Actor)

Sub-Symbolic Components

  • Sensor and Actuator

  • Planner

  • Predictor

  • Visualizer

50 of 86

50

  • Estimator (and Actor)

Sub-Symbolic Components

  • Sensor and Actuator

  • Planner

  • Predictor

  • Visualizer

51 of 86

Sensor and Actuator

51

Liu, Y., Kheradmand, A., & Armand, M. (2023). Toward process controlled medical robotic system. arXiv preprint arXiv:2308.05809.

Visual

servoing

52 of 86

Sensor and Actuator

52

Liu, Y., Kheradmand, A., & Armand, M. (2023). Toward process controlled medical robotic system. arXiv preprint arXiv:2308.05809.

Visual servoing

53 of 86

Sub-Symbolic Estimator and Actor

53

54 of 86

Sub-Symbolic Estimator

54

Liu, Y., Zhang, J., Diaz-Pinto, A., Li, H., Martin-Gomez, A., Kheradmand, A., & Armand, M. (2024, April). Segment any medical model extended. In Medical Imaging 2024: Image Processing (Vol. 12926, pp. 411-422). SPIE.

55 of 86

Sub-Symbolic Estimator

55

Zhang, J., Zhang, Z., Liu, Y., Chen, Y., Kheradmand, A., & Armand, M. (2024, May). Realtime robust shape estimation of deformable linear object. In 2024 IEEE International Conference on Robotics and Automation (ICRA) (pp. 10734-10740). IEEE.

56 of 86

Sub-Symbolic Actor

56

  • Learned / programmed reactive visuomotor policies in the skill library
    • VLAs like GR00T
    • IL models like ACT and Diffusion Policy
    • Trained recovery policies

57 of 86

Sub-Symbolic Predictor

57

  • Learned / analytical world models
    • Nvidia Cosmos-Predict
    • Nvidia Cosmos-Transfer
    • Nvidia Cosmos-Reason

  • They do not output trajectories directly, but provide multiple forecasts of pixels and text descriptions.

  • Observation-level simulator

  • Computationally heavy, so they are best used offline.
    • Synthetic data generation for policy training

58 of 86

Sub-Symbolic Predictor

58

Internship at Astera Institute

59 of 86

Sub-Symbolic Visualizer

59

Ai, L., Liu, Y., Armand, M., Kheradmand, A., & Martin-Gomez, A. (2024, May). On the Fly Robotic-Assisted Medical Instrument Planning and Execution Using Mixed Reality. In 2024 IEEE International Conference on Robotics and Automation (ICRA). IEEE.

60 of 86

Symbolic Planner

60

61 of 86

Symbolic Visualizer

61

62 of 86

Symbolic Predictor

62

63 of 86

Symbolic Estimator

63

64 of 86

Sub-Symbolic Estimator and Actor

64

65 of 86

Sub-Symbolic Predictor

65

66 of 86

Symbolic Visualizer

66

67 of 86

Sub-Symbolic Planner and Dispatcher

67

68 of 86

Infrastructure

68

Robotic System�Data Platform�Calibrations

69 of 86

Robotic Systems

69

  • Robots
  • Visualization platforms
  • Teleoperators

Liu, Y., Zhang, J., Ai, L., Tian, J., Sefati, S., Liu, H., ... & Armand, M. (2025). An Image-Guided Robotic System for Transcranial Magnetic Stimulation: System Development and Experimental Evaluation. IEEE Robotics and Automation Letters.

70 of 86

Data Platforms / Digital Twin

70

Liu, Y., Ku, Y. C., Zhang, J., Ding, H., Kazanzides, P., & Armand, M. (2025). dARt Vinci: Egocentric Data Collection for Surgical Robot Learning at Scale. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

71 of 86

Data Platforms / Digital Twin

71

Liu, Y., Ku, Y. C., Zhang, J., Ding, H., Kazanzides, P., & Armand, M. (2025). dARt Vinci: Egocentric Data Collection for Surgical Robot Learning at Scale. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

72 of 86

Data Platforms / Digital Twin

72

Liu, Y., Ku, Y. C., Zhang, J., Ding, H., Kazanzides, P., & Armand, M. (2025). dARt Vinci: Egocentric Data Collection for Surgical Robot Learning at Scale. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

73 of 86

Geometric Calibrations

73

  • Ensure the hybrid state is expressed correctly, enabling correct symbolic grounding and abstraction

  • Ensure correct correspondence of the transformations in the data platforms and the digital twin systems

74 of 86

Geometric Calibrations

74

Liu, Y., Zhang, J., She, Z., Kheradmand, A., & Armand, M. (2024, May). Gbec: Geometry-based hand-eye calibration. In 2024 IEEE International Conference on Robotics and Automation (ICRA) (pp. 16698-16705). IEEE.

Ai, L., Liu, Y., Armand, M., & Martin-Gomez, A. (2024, October). Calibration of Augmented Reality Headset with External Tracking System Using AX= YB. In 2024 IEEE International Symposium on Mixed and Augmented Reality (ISMAR) (pp. 210-218). IEEE.

Hand-eye calibration

Virtual-to-real calibration

75 of 86

Geometric Calibrations

75

Hand-eye calibration

Virtual-to-real calibration

Liu, Y., Zhang, J., She, Z., Kheradmand, A., & Armand, M. (2024, May). Gbec: Geometry-based hand-eye calibration. In 2024 IEEE International Conference on Robotics and Automation (ICRA) (pp. 16698-16705). IEEE.

Ai, L., Liu, Y., Armand, M., & Martin-Gomez, A. (2024, October). Calibration of Augmented Reality Headset with External Tracking System Using AX= YB. In 2024 IEEE International Symposium on Mixed and Augmented Reality (ISMAR) (pp. 210-218). IEEE.

76 of 86

Contributions

  • Developed a hierarchical architecture that enables robots to make decisions as the world evolves, which
    • connects modular classical approaches and emerging learned models
    • separates a symbolic layer from the reflex-like sub-symbolic layer

76

  • Our Examples Included within the Architecture
    • An oracle-guided visuomotor task planner
    • An egocentric simulation data platform
    • State Machine Serialization Language
    • An image-guided robot-assisted intervention system
    • An AR-based medical navigation platform

77 of 86

Future Works

  • Visuomotor (navigation, manipulation) policies
    • Task- / type- specific
  • Learning-based symbolic planner
    • Task decomposition,
    • Task-level world model
  • Symbolic estimator
    • More accurate phase / task detector
  • Faster sub-symbolic predictor
    • VLM-based World model

77

78 of 86

Publications

  • Mu, T., Liu, Y., & Armand, M. (2025). Look Before You Leap: Using Serialized State Machine for Language Conditioned Robotic Manipulation. arXiv preprint arXiv:2503.05114.
  • Liu, Y., Ku, Y. C., Zhang, J., Ding, H., Kazanzides, P., & Armand, M. (2025). dARt Vinci: Egocentric Data Collection for Surgical Robot Learning at Scale. arXiv preprint arXiv:2503.05646.
  • Liu, Y., Zhang, J., Ai, L., Tian, J., Sefati, S., Liu, H., ... & Armand, M. (2025). An Image-Guided Robotic System for Transcranial Magnetic Stimulation: System Development and Experimental Evaluation. IEEE Robotics and Automation Letters.
  • Li, H., Yan, W., Liu, D., Qian, L., Yang, Y., Liu, Y., ... & Wang, G. (2024). Evd surgical guidance with retro-reflective tool tracking and spatial reconstruction using head-mounted augmented reality device. IEEE Transactions on Visualization and Computer Graphics.
  • Ai, L., Liu, Y., Armand, M., & Martin-Gomez, A. (2024, October). Calibration of Augmented Reality Headset with External Tracking System Using AX= YB. In 2024 IEEE International Symposium on Mixed and Augmented Reality (ISMAR) (pp. 210-218). IEEE.
  • Liu, Y., Tian, J., Martin-Gomez, A., Arshad, Q., Armand, M., & Kheradmand, A. (2024). Autokinesis reveals a threshold for perception of visual motion. Neuroscience543, 101-107.
  • Liu, Y., Zhang, J., Diaz-Pinto, A., Li, H., Martin-Gomez, A., Kheradmand, A., & Armand, M. (2024, April). Segment any medical model extended. In Medical Imaging 2024: Image Processing (Vol. 12926, pp. 411-422). SPIE.
  • Liu, Y., & Armand, M. (2024). A roadmap towards automated and regulated robotic systems. arXiv preprint arXiv:2403.14049.
  • Ai, L., Liu, Y., Armand, M., Kheradmand, A., & Martin-Gomez, A. (2024, May). On the Fly Robotic-Assisted Medical Instrument Planning and Execution Using Mixed Reality. In 2024 IEEE International Conference on Robotics and Automation (ICRA) (pp. 13192-13199). IEEE.
  • Liu, Y., Zhang, J., She, Z., Kheradmand, A., & Armand, M. (2024, May). Gbec: Geometry-based hand-eye calibration. In 2024 IEEE International Conference on Robotics and Automation (ICRA) (pp. 16698-16705). IEEE.
  • Zhang, J., Zhang, Z., Liu, Y., Chen, Y., Kheradmand, A., & Armand, M. (2024, May). Realtime robust shape estimation of deformable linear object. In 2024 IEEE International Conference on Robotics and Automation (ICRA) (pp. 10734-10740). IEEE.
  • Liu, Y., Kheradmand, A., & Armand, M. (2023). Toward process controlled medical robotic system. arXiv preprint arXiv:2308.05809.
  • Liu, Y., Zhang, J., She, Z., Kheradmand, A., & Armand, M. (2023). Samm (segment any medical model): A 3d slicer integration to sam. arXiv preprint arXiv:2304.05622.
  • Liu, Y., Liu, S. J., Sefati, S., Jing, T., Kheradmand, A., & Armand, M. (2022, March). Inside-out tracking and projection mapping for robot-assisted transcranial magnetic stimulation. In Optical architectures for displays and sensing in augmented, virtual, and mixed reality (AR, VR, MR) III (Vol. 11931, pp. 57-70). SPIE.

78

79 of 86

Acknowledgement

  • National Institute of Deafness and Other Communication Disorders (R01DC018815), PI: Amir Kheradmant
  • National Institute of Biomedical Imaging and Bioengineering (R01EB023939), PI: Mehran Armand
  • National Institute of Arthritis and Musculoskeletal and Skin Diseases (R01AR080315), PI: Mehran Armand and Amit Jain
  • Internal Fundings from the Department of Computer Science, Johns Hopkins University

79

80 of 86

80

81 of 86

81

Thesis Committee

82 of 86

82

83 of 86

83

84 of 86

84

85 of 86

85

My family

86 of 86

Overall Architecture

86