
Tic-Tac-Toe using MCTS
Group 7



The problem

- Minimax searches through every path on 
tree for best move

- Breadth of tree = # of possible moves
- Usable but slightly inefficient for simpler 

game like Tic-Tac-Toe
- Problematic for complex games like chess 

and Go
- Larger game space and more complex rules lead to 

more possible moves
- Tree too large to go through every path in 

reasonable amount of time



Monte Carlo Tree Search (MCTS)

- Alternative to Minimax for exploring game tree
- Efficient sampling

- Doesn’t evaluate all moves equally
- Focuses more on reevaluating promising or uncertain moves, ignores less promising moves

- Consists of 4 phases:
- Selection
- Expansion
- Simulation
- Backpropagation



Implementation of MCTS - selection

- Every single children of the board state has a value V and a visit counts n
- Select the path with the max UCB: 
- k is the state, p the player, C = 2, N = parent visits, n = state visits



Implementation of MCTS - expansion

- The node chosen is being expanded. A new children is created with a n of 0 
and a value V of 0.



Implementation of MCTS - simulation

- Simulate a game from the new expanded node
- Play the game randomly until the game is terminated without saving it 
- Record the outcome : -1 : loss 0: draw 1:win



Implementation of MCTS - back propagation

- Back propagate the values to the root of the tree
- V = V(old) + V(new terminal state), 

- n +=1.



Problems encountered along the way

KeyError: trying to access a key in a dictionary that does not exist. The 
children dictionary does not contain the key for the node object you are trying 
to access.

Solution: check if the node has a children and if not create the children of that 
node.



The influence of the number of iterations

- The timeout time t will directly influence the number of iterations
- The more iterations of MCTS, the more accurate the play should be 
- Test was performed with different iterations, the outcome was as follows:

- 100 iterations : 

- 1000 iterations:

1st game 2nd game 3rd game 4th game 5th game

Human wins draw draw draw Human wins

1st game 2nd game 3rd game 4th game 5th game

draw draw draw draw draw



Limitations of using MCTS

- Performance depends on the number of iterations performed
- If a game has a higher branching factor, it would require a higher iteration count to come up 

with a viable play

- Susceptible to “trap states”
- Superficial strong moves, might lead to loss via subtle line of play known by an expert player



Conclusion

● Advantages over alpha-beta pruning and similar algorithm

● Strengths and weaknesses of creating the asymmetric tree

● More powerful when coupled up with other types of architecture 

● Overfitting 



References

https://courses.cs.washington.edu/courses/cse599i/18wi/resources/lecture19/lectu
re19.pdf

https://en.wikipedia.org/wiki/Monte_Carlo_tree_search

https://courses.cs.washington.edu/courses/cse599i/18wi/resources/lecture19/lecture19.pdf
https://courses.cs.washington.edu/courses/cse599i/18wi/resources/lecture19/lecture19.pdf
https://en.wikipedia.org/wiki/Monte_Carlo_tree_search

