Tic-Tac-Toe using MCTS

Group 7

L
1%
! 2
[/\

~ A

C
XX

The problem

Minimax searches through every path on
tree for best move

- Breadth of tree = # of possible moves
Usable but slightly inefficient for simpler

game like Tic-Tac-Toe
Problematic for complex games like chess
and Go

- Larger game space and more complex rules lead to
more possible moves

- Tree too large to go through every path in
reasonable amount of time

Monte Carlo Tree Search (MCTS)

- Alternative to Minimax for exploring game tree
- Efficient sampling

- Doesn’t evaluate all moves equally

- Focuses more on reevaluating promising or uncertain moves, ignores less promising moves
- Consists of 4 phases:

- Selection

- Expansion

- Simulation

- Backpropagation

Implementation of MCTS - selection

- Every single children of the board state has a value V and a visit counts n

- Select the path with the max UCB(k,p) = V (k) + C * Jln(N) /n
- ks the state, p the player, C = 2, N = parent visits, n = state visits

Implementation of MCTS - expansion

- The node chosen is being expanded. A new children is created with a n of O
and a value V of 0.

Cou 2
X | | g
Lo Y4
JCB-0n L. 0 // \’ﬁ\\mﬁ‘:‘\
S (boths) Morve At Kilm oA
Ol0k0(0.0l vo Gk Bl Sgr AX
b < liX \(h‘ﬁ—\ O,‘QL\
/ o
K A_
3@
O gﬁw oML

Implementation of MCTS - simulation

Simulate a game from the new expanded node

- Play the game randomly until the game is terminated without saving it
- Record the outcome : -1 : loss 0: draw 1:win

Fiqu 4
> R
plosger. O - Moo cpporent- /\/< | \{b 9
WS MR
T e e
\ fEe) D=8 / .) -
Q:X(A[\ ’&7 ’X“"O Koo A X . n:=0 N -0 vl T \
00 OQgf ko Br:r< L L o)<~‘F—7L o XX ‘\t\l?o
fLV‘ K S 0.0 - OO0 - ,Oﬂ_f_h “
| LA '(\f\/T i (} B
/ ‘. |
= O Yomon) X -0
P o OQl _Y=0
O“ A | pa&‘dl.w\mml,
AL__X V-0

TN 7
\%)\:/ ‘ﬁqr Tonuinal Yhtn
e I

Implementation of MCTS - back propagation

- Back propagate the values to the root of the tree

-V =V(old) + V(new terminal state),

- n+=1,
))
é‘:———p; Vo
Q‘,le
UC%O&W L \\M\
A X 10 X e X :if:‘/“‘o X&” 00 [A o= 7 | 0D
Q L V0 O. Qj_\/O O ;Q_Lf o Q‘F“ V0 (’GL‘ V=0 é_‘)\ | .0
| /< [T ?' /:"Jl‘ O‘,\/i_
| |
X | aed
V=

Problems encountered along the way

KeyError: trying to access a key in a dictionary that does not exist. The
children dictionary does not contain the key for the node object you are trying
to access.

Solution: check if the node has a children and if not create the children of that
node.

The influence of the number of iterations

- The timeout time t will directly influence the number of iterations
- The more iterations of MCTS, the more accurate the play should be
- Test was performed with different iterations, the outcome was as follows:

100 iterations :

1st game 2nd game 3rd game 4th game 5th game

Human wins draw draw draw Human wins
1000 iterations:

1st game 2nd game 3rd game 4th game 5th game

draw draw draw draw draw

Limitations of using MCTS

- Performance depends on the number of iterations performed

- If a game has a higher branching factor, it would require a higher iteration count to come up
with a viable play

- Susceptible to “trap states”
- Superficial strong moves, might lead to loss via subtle line of play known by an expert player

Conclusion

Advantages over alpha-beta pruning and similar algorithm
Strengths and weaknesses of creating the asymmetric tree
More powerful when coupled up with other types of architecture

Overfitting

References

https://courses.cs.washington.edu/courses/cse599i/18wi/resources/lecture19/lectu
re19.pdf

https://en.wikipedia.org/wiki/Monte Carlo tree search

https://courses.cs.washington.edu/courses/cse599i/18wi/resources/lecture19/lecture19.pdf
https://courses.cs.washington.edu/courses/cse599i/18wi/resources/lecture19/lecture19.pdf
https://en.wikipedia.org/wiki/Monte_Carlo_tree_search

