Tic-Tac-Toe using MCTS

Group 7

L
1%
! 2
[ /\

~ A

C
XX




The problem

Minimax searches through every path on
tree for best move

- Breadth of tree = # of possible moves
Usable but slightly inefficient for simpler

game like Tic-Tac-Toe
Problematic for complex games like chess
and Go

- Larger game space and more complex rules lead to
more possible moves

- Tree too large to go through every path in
reasonable amount of time




Monte Carlo Tree Search (MCTS)

- Alternative to Minimax for exploring game tree
- Efficient sampling

- Doesn’t evaluate all moves equally

- Focuses more on reevaluating promising or uncertain moves, ignores less promising moves
- Consists of 4 phases:

- Selection

- Expansion

- Simulation

- Backpropagation



Implementation of MCTS - selection

- Every single children of the board state has a value V and a visit counts n

- Select the path with the max UCB(k,p) = V (k) + C * Jln(N) /n
- ks the state, p the player, C = 2, N = parent visits, n = state visits




Implementation of MCTS - expansion

- The node chosen is being expanded. A new children is created with a n of O
and a value V of 0.
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Implementation of MCTS - simulation

Simulate a game from the new expanded node

- Play the game randomly until the game is terminated without saving it
- Record the outcome : -1 : loss 0: draw 1:win
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Implementation of MCTS - back propagation

- Back propagate the values to the root of the tree

-V =V(old) + V(new terminal state),

- n+=1,
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Problems encountered along the way

KeyError: trying to access a key in a dictionary that does not exist. The
children dictionary does not contain the key for the node object you are trying
to access.

Solution: check if the node has a children and if not create the children of that
node.



The influence of the number of iterations

- The timeout time t will directly influence the number of iterations
- The more iterations of MCTS, the more accurate the play should be
- Test was performed with different iterations, the outcome was as follows:

100 iterations :

1st game 2nd game 3rd game 4th game 5th game

Human wins draw draw draw Human wins
1000 iterations:

1st game 2nd game 3rd game 4th game 5th game

draw draw draw draw draw




Limitations of using MCTS

- Performance depends on the number of iterations performed

- If a game has a higher branching factor, it would require a higher iteration count to come up
with a viable play

- Susceptible to “trap states”
- Superficial strong moves, might lead to loss via subtle line of play known by an expert player



Conclusion

Advantages over alpha-beta pruning and similar algorithm
Strengths and weaknesses of creating the asymmetric tree
More powerful when coupled up with other types of architecture

Overfitting
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