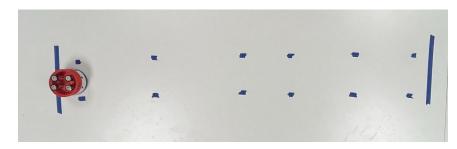
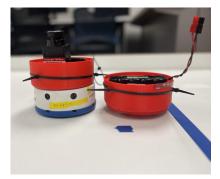
Progress Review 1

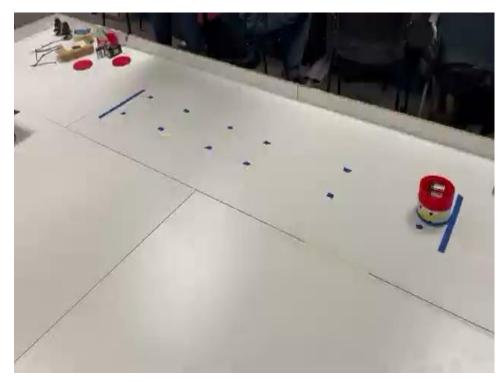

Team A: Mind The Gap

Agenda

- 1. Mechanism Design and Payload Tests Sankalp
- 2. Localization using VICON Sudhansh
- 3. Server-Agent communications Hari
- 4. Task Allocator based on Hungarian Algorithm Sandhya
- 5. Collision free MAPF planner Dhanvi

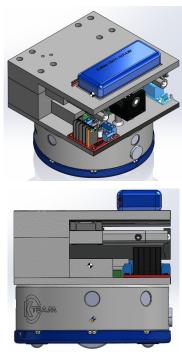
Work done for PR1:

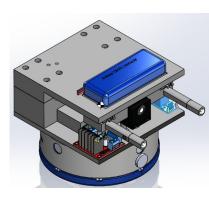

1. Khepera Payload Test



Individual Agent

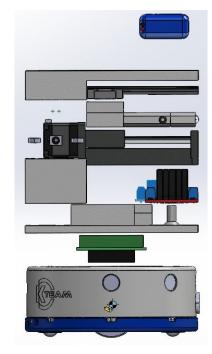
Test Track


Coupled Test

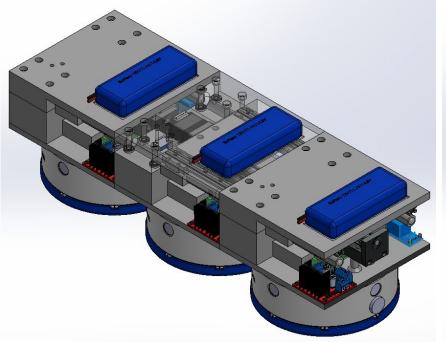

Test Run \	/ideo
------------	-------

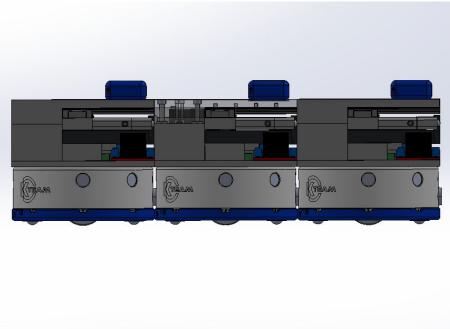
Test No.	Weight (g)	Time Readings (LR1, RR, LR2)
1	784	3.98, 3.26, 4.12
6	1005	4.13, 3.23, 4.38
12	1588	3.66, 3.01, 3.78
22	2468	Failed attempt
24		4.33, 3.9, 4.62
30	3009	4.38, 4.02, 4.57
38	3566	4.44, 3.98, 4.69

2. Coupling Mechanism Version 1- CAD



Pin Retracted

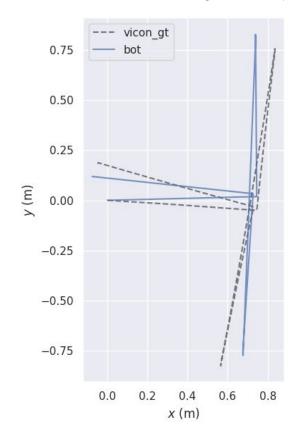




Pin Extended

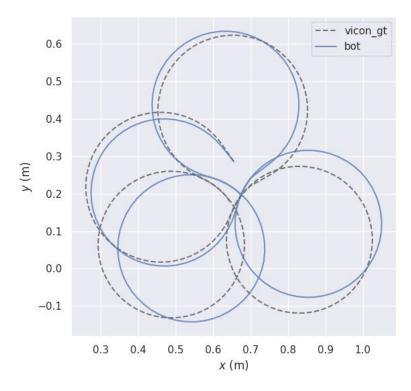
Exploded View

Coupled State


Goals for PR2:

- 1. 3D Prints
- 2. Procure Components
- 3. Initiate Assembly

Localization


- Evaluated wheel odometry of the robots by comparing with trajectory from the VICON tracker
- Collected data from live runs using ROS
- Computed the Absolute Pose Error (APE) and Relative Pose Error (RPE) used as standard metrics for odometry evaluation
- Tried on random trajectories with enough straight lines and curves
 - Settled on 2 candidate trajectories to compare robot performances throughout
 - T-shape: Straight lines and in-place rotations
 - 8-shape: Curves in the trajectory; more relevant to pure pursuit types of control

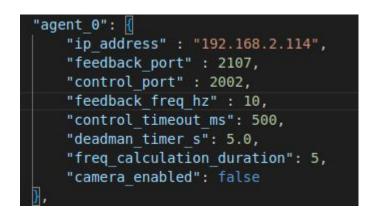
Localization: T-shape Trajectory

Metric	Absolute Pose Error (m)	Relative Pose Error (m)
Mean	0.033763	0.002546
RMS	0.048392	0.004497

Localization: 8-shape Trajectory

Metric	APE (m)	RPE (m)
Mean	0.146804	0.007857
RMS	0.158103	0.009737

Localization: Challenges


- Miscalibration of the VICON tracker accumulates large errors over time
 - VICON cameras pretty sensitive to disturbances in the environment
- Odometry thrown off if wheels aren't cleaned
- Ground clearance is very small; robots get stuck
 - Encoders keep ticking, odometry gets thrown off

Localization: Future Work

- Integrating SLAM Toolbox and using the Khepera's LRF Module
- Integrating the VICON's tracked odometry with SLAM Toolbox for map building
- Evaluating odometry from SLAM Toolbox
 - \circ Using LRF scans and wheel odometry together
- Increasing payload improves localization accuracy
 - RoboSAR suggested we try this out and was validated

Communications

- Setup ROBOSAR FMS repository and tested the communications
 - UDP, Protobuf based

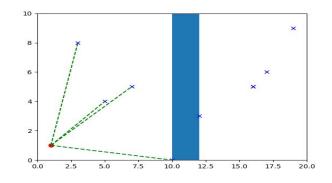
• Checked the maximum frequency for sensor data transmission - 10 Hz

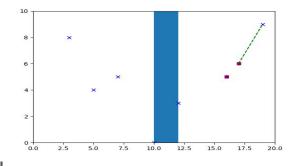
Communications

- Checked the quality of data transmission by checking losses in sequence IDs
 - Tested for individual agents
 - Tested for multiple agents together 3
- Debugged an issue where robot was not responding because of a missing LRF

Future work

- Work on Pure pursuit controller and implement waypoint navigation in simulation and hardware
- Check Velocity obstacles method implemented by ROBOSAR team for centralized controller


Task Allocation


Work done for PR1:

- Literature Review of task allocation approaches
 - Focus on small robot swarms
 - Greedy algorithm relatively naive, good starting point
 - Hungarian algorithm is good for one to one task allocation.
- Python program (Greedy POI Allocation)
 - \circ $\hfill Allocates POIs to robots on one side of a gap.$
 - Uses A* to calculate cost per robot to reach a given POI, considering obstacles.
 - Uses the Hungarian algorithm to efficiently allocate POIs to the robots
 - Ensures that all POIs are allocated to robots

Goals for PR 2:

- Integrate greedy algorithm with planner and ROS
- Create reasonably optimised gap crossing task allocator, implement in simulatio...

Planning

Work done for PR1:

- Lit review of MAPF approaches
 - Multi-agent A* (very expensive)
 - Prioritized Planning (Quick but no guarantees)
 - Conflict based search (Optimal with good speed)

• C++ program

- Takes input map and tasks as txt files (discretized 8-connected grids)
- \circ \quad Outputs collision free paths for each agent
- ROS
 - Familiarization tasks (chatbot_node)
 - RoboSAR OccupancyGrid and map_server implementation

Goals for PR 2:

- Implement CCBS (plans for a fixed time horizon)
- Create a Planner ROS Node and integrate with OccupancyGrid
- Test in simulator

	0

	1
	2
	3
	Agent #0
	(0, 0, 0)
	(1, 1, 1)
	(2, 2, 2)
	(3, 3, 3)
	(4, 4, 4)
	(5, 5, 5)
)	(6, 6, 6)
·	Agent #1
	(5, 1, 0)
	(4, 2, 1)
	(3, 2, 2)
	(2, 3, 3)
	(3, 3, 4)
	(3, 3, 5)
	(3, 3, 6)
	<pre>(base) dsreeni@dsreeni-XPS-9320:~/Sem2/MRSD_Project_Course/PlanningCod</pre>

Risk Management

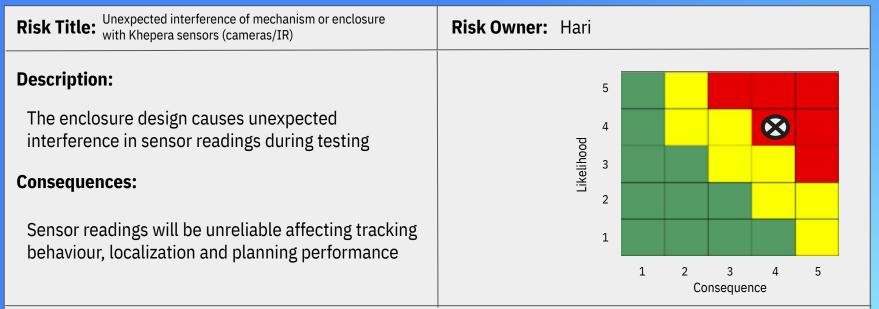
Key Risks Mitigated:

- 1. Identifying and ordering of parts (both final and local options for backup)
- 2. Payload tests suggest Khepera will be suitable for the task
- 3. Robosar FMS has been tested thoroughly with all agents and will be suitable

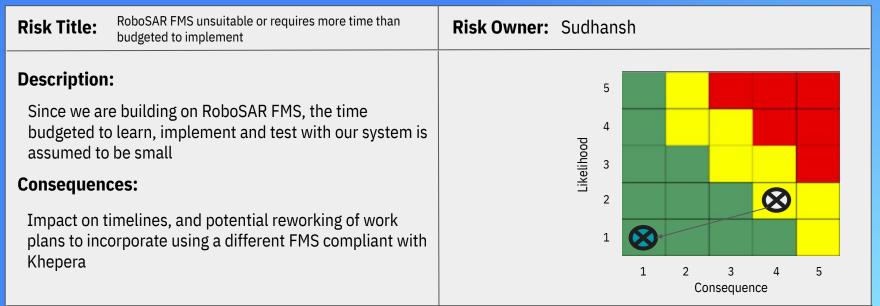
Key Risks Yet to Be Mitigated:

- 1. Sensor interference with enclosure
- 2. Enclosure breaking during testing

New risks:


- 1. Discretized planning approach might not be suitable
 - Need to perform unit test on actual hardware ASAP (By PR2)
- 2. Integration risk with Khepera extension boards
 - Use existing Khepera extension boards in lab to perform quick tests (By PR2)

- 1. Order parts early (by second week of Feb 2023) to give sufficient buffer time
- 2. Identify local suppliers and backup designs to pivot in case of delays


- 1. Alternate material enclosure design to account for emf interference
- 2. Multiple sub-tests in design phase to catch conflicts earlier

Risk Title: Enclosure breaks during testing	Risk Owner: Sankalp
Description: Enclosure fails and weakens during vertical loading testing or integration Consequences:	5 4 3 2
Mechanism might fail during the demo impacting timelines and SVD demo performance	1 1 1 1 2 3 4 5 Consequence

- 1. Manufacture spare enclosures to keep on hand in case of failure
- 2. Create enclosure attachment SOP to standardise the process and speed it up

- 1. Start early with reviewing code and identifying points of failure
- 2. Identify and perform trade studies for other options for communication

Description: 5 With the cold increasing, team members may fall sick for a few days at a time 4 Consequences: 3	
Impact on timelines, work scheduling and hitting deadlines for milestones	5

- 1. Up-to-date documentation of each team member's work
- 2. Distribute work in a way that has at least two teammates involved in each stream
- 3. Rest days to prevent burnout and stressing