Effect of Voltage and Frequency on Active Power

Introduction

• The complex load power is given by

S = P + jQ= VI = Y | V |² Where Y is admittance of load

$$S = |V|^{2} Y$$

= $|V|^{2} / (R - jX)$

$$= |V|^{2} (R + jX) / (R - jX) (R + jX)$$

$$= [|V|^{2} R/(R^{2} + X^{2})] + j[|V|^{2} X/(R^{2} + X^{2})]$$

= P + j Q

Therefore

$$P = [|V|^{2} R/(R^{2} + X^{2})]$$

$$Q = [|V|^{2} X / (R^{2} + X^{2})]$$

• Therefore we can say that the active power and reactive power is

directly proportional to square of the supply voltage.

Change in Supply Voltage

$$P = [|V|^{2} R/(R^{2} + X^{2})]$$

 $dP / dV = [2 | V | R / (R^{2} + X^{2})]$

(dP/dV)/P

=
$$[2|V|R/(R^2 + X^2)]/[|V|^2 R/(R^2 + X^2)]$$

= $[2|V|R/(R^2 + X^2)]/[|V|^2 R/(R^2 + X^2)]$

= 2 / | V |

Therefore

dP / P = 2 d | V | / | V |

• We can say that change in voltage directly affect the change in real

power of the load. If there is 10% change in supply voltage, 20% change

in the real power of the load.

Change in Supply Frequency

The change in active power with respect to supply frequency

$$P = [|V|^{2} R/(R^{2} + X_{L}^{2})]$$

Inductive reactance $X_L = 2\pi fL$

$$P = [|V|^{2} R/(R^{2} + (2\pi fL)^{2}]$$

$$-[|V|^{2} R][2(2\pi fL)(2\pi L)][(R^{2} + X_{L}^{2})]/[|V|^{2} R][(R^{2} + (2\pi fL)^{2}]^{2}$$

$$[dP/P] = -2X_{L}^{2}/[(R^{2} + X_{L}^{2})][df/f]$$
Where Sin² $\Phi = X_{L}^{2}/[(R^{2} + X_{L}^{2})]$

[dP/df]/P=

 $\left[\left(R^{2} + (2\pi fL)^{2} \right) \left[0 \right] - \left[|V|^{2} R \right] \left[0 + 2(2\pi fL)(2\pi L) \right] / \left[(R^{2} + (2\pi fL)^{2})^{2} \right]^{2} \right]$

dP/df =

If the load power factor $\cos \Phi = 0.6$, $\sin \Phi = 0.8$

```
[dP/P] = \{-2 Sin^2 \Phi [df/f]\}
```

= { - 1.28 [df / f] }

It means that if there is 10% percentage drop in frequency, there will – 12.8

active power decreases.

Thank You www.myelectrical2015.com