
There are useful, common helper functions are

defined a lot, used a lot, downloaded a lot.

We should standardize at least some of them.

This proposal is seeking Committee consensus for

Stage 1: that standardizing at least some Function

helpers is “worth investigating”.

It is not seeking to standardize every imaginable

helper function—just some selected

frequently used functions.

Choosing which functions to standardize would be

bikeshedding for Stage 2.

Function helpers
J. S. Choi

Indiana University
2021-10-25

GitHub repository

https://github.com/js-choi/proposal-function-helpers

Why standardize helper functions

High frequency, universal usefulness: Each
function is a frequently trodden cowpath and is
frequently re-implemented.
Every developer needs to manipulate callbacks.

Developer ergonomics: When a helper function
is standardized, we can readily use it in REPL or
script, instead of downloading an external package
or pasting a definition.

Code clarity: Standardization gives one standard
name to each helper function, rather than various
names from various libraries that refer to the same
thing. Even for simple functions, a standard name
may often be clearer than an inline declaration,
e.g., identity vs. x => x.

Unlike new syntax, standardized helper functions are
relatively lightweight ways to improve

the experience of all developers.

These helper functions are well-trodden cowpaths, each
of which may deserve standardization.

Lauri Silvennoinen. CC BY 4.0.

The following functions are only
possibilities. Choosing which functions
to standardize in this proposal would be
bikeshedding for before Stage 2.
flow flowAsync pipe pipeAsync
constant identity noop
once debounce throttle
aside unThis

The Function.flow static method would create a
new function by composing several callbacks.
Composition flows LTR: leftmost callback is
called first, and rightmost callback is called last.

If Function.flow receives no arguments, then, by
default, it will return Function.identity.

Function.flowAsync would be the same as flow,
except it would work on async functions.

The name “flow” comes from lodash.flow. (The
name compose would be confusing with other
languages’ RTL function composition.) The following
real-world examples originally used lodash.flow.

Possibility: flow and flowAsync
Function.flow(...fns)

Function.flowAsync(...fns)

const { flow } = Function;

const f = flow(f0, f1, f2);

f(5, 7); // f2(f1(f0(5, 7)))

From strapi@3.6.8:

const transform = flow(

 flattenDeep,

 cleanupUnwantedProperties

);

From semantic-ui-react@v2.0.4:

const getInfoForSeeTags = flow(

 _.get('docblock.tags'),

 _.filter(tag => tag.title === 'see'),

 _.map(tag => { /* … */ }),

);

The Function.pipe static method would apply
several callbacks to an initial input value.
Application goes LTR: leftmost callback is called
first, and rightmost callback is called last.

Function.pipeAsync would be the same except
it would work on async functions.

pipe(x, f0, f1) would be equivalent
to flow(f0, f1)(x).

pipeAsync(x, f0, f1) would be equivalent
to flowAsync(f0, f1)(Promise.resolve(x)).

The following real-world example originally used
fp-ts’s pipe.

Possibility: pipe and pipeAsync
Function.pipe(input, ...fns)

Function.pipeAsync(input, ...fns)

const { pipe } = Function;

pipe(x, f0, f1, f2); // f2(f1(f0(5)))

From @gripeless/pico@1.0.1:

return pipe(

 download(absoluteURL),

 mapRej(downloadErrorToDetailedError),

 chainFluture(responseToBlob),

 chainFluture(blobToDataURL),

 mapFluture(dataURL => `url(${dataURL})`)

);

There has been a lot of community feedback from
developers who have desired standardized
unary-function application and are unhappy with the
pipe operator |>’s topic syntax. Standard pipe functions
would help ameliorate their concerns.

From Cypress v8.6.0:

setDefaultHeader(

 'access-control-expose-headers',

 constant('*'))

function findTestInSuite (suite, fn = identity) {

 for (const test of suite.tests) {

 if (fn(test)) { return test; } } }

From Odoo v15.0:

url.toJSON = constant(this.url);

From Meteor v2.5.0:

const boilerplate = new Boilerplate(

 CORDOVA_ARCH, manifest, {

 urlMapper: identity, /* … */

 });

The Function.constant static method would
create a new function that always returns a
given constant value.

The Function.identity static method would
always return its first argument.

constant(x) is equivalent to () => x.
identity is equivalent to x => x.

const { constant, identity } = Function;

[0, 1].map(constant(5)) // [5, 5]

[0, 1].map(identity) // [0, 1]

The following real-world examples originally used
lodash.constant and lodash.identity.

Possibility: constant and identity

The Function.noop static method would always
return undefined.

noop is equivalent to () => {}.

const { noop } = Function;

[0, 1].map(noop)

// [undefined, undefined]

This function is already available and frequently
used both from jQuery and from Lodash,
generally to fill a required callback argument or
to disable a callback property.

The following real-world examples originally used
jQuery’s $.noop or lodash.noop.

Possibility: noop

From Twitter Typeahead.js v0.11.1:

this.cancel = function cancel() {

 canceled = true;

 that.cancel = noop;

 that.async &&

 that.trigger('asyncCanceled', query);

};

From Three.js 0.133.1:

SuiteUI.prototype.run = function() {

 this.runButton.click = noop;

 this.runButton.innerText = "Running..."

 this.suite.run({ async: true });

}

From Wordpress v5.1.11:

{ /* … */

 defaultExpandedArguments: {

 duration: 'fast',

 completeCallback: noop }

 /* … */ }

https://api.jquery.com/jQuery.noop/

The Function.prototype.once method would
create a new function that calls the original
function at most once, no matter how much the
new function is called.

const initialize = createApplication.once();

initialize();

initialize();

// createApplication is invoked only once.

lodash.once is one of the most popular
Lodash functions. jQuery also has a similar .one
method. Many other APIs have similar methods,
such as Node’s events API.

The following real-world examples
originally used lodash.once.

From Meteor v2.2.1:

// “Are we running Meteor from a git checkout?”

export const inCheckout = (function () {

 try { /* … */ } catch (e) { console.log(e); }

 return false;

}).once();

From cypress@8.6.0:

cy.on('command:retry', _.after(2, (() => {

 button.remove() /* … */

}).once()))

From Jitsi Meet v6482:

this._hangup = (() => {

 sendAnalytics(createToolbarEvent('hangup'));

 /* … */

}).once()

Possibility: once

https://www.npmjs.com/package/lodash.once
https://api.jquery.com/one/
https://api.jquery.com/one/
https://nodejs.org/api/events.html#handling-events-only-once

The Function.prototype.debounce method would
create a new function that, when called, calls the
original function—but only after a given length of
time has elapsed since the last time the new
function was called.

The Function.prototype.throttle method would
create a new function that, when called, calls the
original function—but only at most once within a
given length of time.

These two methods may come with options that
could be bikeshedded in Stage 1.

There are multiple articles (e.g., from CSS Tricks and from
Ben Alman) that further explain the difference between
debounce and throttle and why both are useful.

Possibility: debounce and throttle

In this example, logging happens on keyup events
from inputEl, but only after the user has stopped
typing for at least 250 ms:

inputEl.addEventListener('keyup',

 console.log.debounce(250));

In this example, logging happens on window scroll,
but no more than once every 250 ms:

window.addEventListener(scroll',

 console.log.throttle(250));

lodash.debounce and lodash.throttle are also two of the
most popular Lodash functions; they are also popular
non-Lodash packages (debounce, throttle-debounce, etc.).
They are useful in virtually every end-user-facing graphical
application.

https://css-tricks.com/debouncing-throttling-explained-examples/
https://benalman.com/projects/jquery-throttle-debounce-plugin/
https://www.npmjs.com/package/lodash.debounce
https://www.npmjs.com/package/lodash.throttle
https://www.npmjs.com/package/debounce
https://www.npmjs.com/package/throttle-debounce

g(console.log.aside(f(input)))

const data = await

Promise.resolve('intro.txt')

 .then(Deno.open)

 .then(Deno.readAll)

 .then(console.log.aside())

 .then(data => new

TextDecoder('utf-8').decode(data));

From IBM/report-toolkit v0.6.1.

function filterEnabledRules(config) {

 return pipe(

 config,

 /* … */

 (ruleIds => {

 debug(/* … */);

 }).aside(); }

The Function.prototype.aside method would a
new function that calls the original function but
always returns the first argument given to the
new function.

fn.aside() would be equivalent to
x => { fn(x); return x; }.

This would be useful for debugging with
console.log or debugger, as well as
performing other side effects.

Libraries or languages also call similar functions
“tap”, “trace”, or “peek”. The following
real-world example originally used lodash.tap.

Possibility: aside

The Function.prototype.unThis method would
create a new function that calls the original
function, supplying its first argument as the original
function’s this receiver, and supplying the rest of
its arguments as the original function’s ordinary
arguments.

fn.unThis() would be equivalent to
fn.call.bind(fn).

This would be useful for converting functions that
rely on the dynamic this binding into functions
that only use their arguments.

const $slice =

Array.prototype.slice.unThis();

$slice([0, 1, 2], 1); // [1, 2]

Possibility: unThis
The following real-world examples originally used the
bind-this library or a similar function.

From chrome-devtools-frontend:

runTests(implementation.unThis(), t);

From string.prototype.trimstart:

var bound = getPolyfill().unThis();

From andreasgal/dom.js:

const /* … */

 join = A.join || Array.prototype.join.unThis(),

 map = A.map || Array.prototype.map.unThis(),

 /* … */;

This function would not be a substitute for a bind-this syntax,
which would allow developers to change the receiver of
functions without creating a wrapper function.

