
Copyright © 2022 Elsevier

Wen-mei Hwu, David Kirk, Izzat El HajjProgramming Massively Parallel Processors
A Hands-on Approach

z

Copyright © 2022 Elsevier

CHAPTER 11 Prefix Sum (Scan)

Copyright © 2022 Elsevier

Scan

• A scan operation:

• Takes:
• An input array [x

0
, x

1
, …, x

n-1
]

• An associative operator ⊕
• e.g., sum, product, min, max

• Returns:
• An output array [y

0
, y

1
, …, y

n-1
] where

• Inclusive scan: y
i
 = x

0
 ⊕ x

1
 ⊕ ... ⊕ x

i

• Exclusive scan: y
i
 = x

0
 ⊕ x

1
 ⊕ ... ⊕ x

i-1

Copyright © 2022 Elsevier

Scan Example

• Addition example:

• In general:

x0 x1 x2 x3 x4 x5 x6 x7

x0 x0..x1 x0..x2 x0..x3 x0..x4 x0..x5 x0..x6 x0..x7

3 6 7 4 8 2 1 9

3 9 16 20 28 30 31 40

Inclusive Scan

Inclusive Scan

x0 x1 x2 x3 x4 x5 x6 x7

ID x0 x0..x1 x0..x2 x0..x3 x0..x4 x0..x5 x0..x6

3 6 7 4 8 2 1 9

0 3 9 16 20 28 30 31

Exclusive Scan

Exclusive Scan

Copyright © 2022 Elsevier

Sequential Scan

• Sequential scan for sum:

• In general:

output[0] = input[0];
for(i = 1; i < N; ++i) {
 output[i] = output[i-1] + input[i];
}

Inclusive Scan

output[0] = 0.0f;
for(i = 1; i < N; ++i) {
 output[i] = output[i-1] + input[i-1];
}

Exclusive Scan

output[0] = input[0];
for(i = 1; i < N; ++i) {
 output[i] = f(output[i-1], input[i]);
}

Inclusive Scan

output[0] = IDENTITY;
for(i = 1; i < N; ++i) {
 output[i] = f(output[i-1], input[i-1]);
}

Exclusive Scan

Copyright © 2022 Elsevier

Segmented Scan

• Parallel scan requires synchronization across parallel workers

• Approach: segmented scan
• Every thread block scans a segment

• Scan the segments’ partial sums

• Add each segment’s scanned partial sum to the next segment

Copyright © 2022 Elsevier

Segmented Scan Example

`

Block 0 (Scan) Block 1 (Scan) Block 2 (Scan) Block 3 (Scan)

Scan Partial Sums

Block 1 (Add) Block 2 (Add) Block 3 (Add)

For now, we will focus on implementing a parallel scan in each block

Copyright © 2022 Elsevier

Parallel (Inclusive) Scan

x0 x1 x2 x3 x4 x5 x6 x7

x0 x0..x1 x2 x2..x3 x4 x4..x5 x6 x6..x7

x0 x0..x1 x2 x0..x3 x4 x4..x5 x6 x4..x7

x0 x0..x1 x2 x0..x3 x4 x4..x5 x6 x0..x7

A parallel reduction tree for the last element gives some others as a byproduct

Copyright © 2022 Elsevier

Parallel (Inclusive) Scan

x0 x1 x2 x3 x4 x5 x6 x7

x0 x0..x1 x1..x2 x2..x3 x3..x4 x4..x5 x5..x6 x6..x7

x0 x0..x1 x0..x2 x0..x3 x3..x4 x4..x5 x3..x6 x4..x7

x0 x0..x1 x0..x2 x0..x3 x3..x4 x4..x5 x0..x6 x0..x7

Another reduction tree gives us more elements

Copyright © 2022 Elsevier

Parallel (Inclusive) Scan

x0 x1 x2 x3 x4 x5 x6 x7

x0 x0..x1 x1..x2 x2..x3 x3..x4 x4..x5 x5..x6 x6..x7

x0 x0..x1 x0..x2 x0..x3 x3..x4 x2..x5 x3..x6 x4..x7

x0 x0..x1 x0..x2 x0..x3 x3..x4 x0..x5 x0..x6 x0..x7

Keep doing reduction trees until we get all answers

Copyright © 2022 Elsevier

Parallel (Inclusive) Scan

x0 x1 x2 x3 x4 x5 x6 x7

x0 x0..x1 x1..x2 x2..x3 x3..x4 x4..x5 x5..x6 x6..x7

x0 x0..x1 x0..x2 x0..x3 x1..x4 x2..x5 x3..x6 x4..x7

x0 x0..x1 x0..x2 x0..x3 x0..x4 x0..x5 x0..x6 x0..x7

Keep doing reduction trees until we get all answers

Copyright © 2022 Elsevier

Parallel (Inclusive) Scan

x0 x1 x2 x3 x4 x5 x6 x7

x0 x0..x1 x1..x2 x2..x3 x3..x4 x4..x5 x5..x6 x6..x7

x0 x0..x1 x0..x2 x0..x3 x1..x4 x2..x5 x3..x6 x4..x7

x0 x0..x1 x0..x2 x0..x3 x0..x4 x0..x5 x0..x6 x0..x7

Overlap the trees and do them simultaneously

Copyright © 2022 Elsevier

Kogge-Stone Parallel (Inclusive) Scan

x0 x1 x2 x3 x4 x5 x6 x7

x0 x0..x1 x1..x2 x2..x3 x3..x4 x4..x5 x5..x6 x6..x7

x0 x0..x1 x0..x2 x0..x3 x1..x4 x2..x5 x3..x6 x4..x7

x0 x0..x1 x0..x2 x0..x3 x0..x4 x0..x5 x0..x6 x0..x7

One thread for
each element

Copyright © 2022 Elsevier

Using Shared Memory

x0 x1 x2 x3 x4 x5 x6 x7

x0 x0..x1 x1..x2 x2..x3 x3..x4 x4..x5 x5..x6 x6..x7

x0 x0..x1 x0..x2 x0..x3 x1..x4 x2..x5 x3..x6 x4..x7

x0 x0..x1 x0..x2 x0..x3 x0..x4 x0..x5 x0..x6 x0..x7

Optimization: load
once to a shared

memory buffer and
perform successive

reads and writes to the
same array can be

done in shared
memory

One thread for
each element

Copyright © 2022 Elsevier

Kogge-Stone Parallel (Inclusive) Scan Code

 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;

 __shared__ float buffer_s[BLOCK_DIM];
 buffer_s[threadIdx.x] = input[i];
 __syncthreads();

 for(unsigned int stride = 1; stride <= BLOCK_DIM/2; stride *= 2) {
 if(threadIdx.x >= stride) {
 buffer_s[threadIdx.x] += buffer_s[threadIdx.x - stride];
 }
 __syncthreads();
 }

 if(threadIdx.x == BLOCK_DIM - 1) {
 partialSums[blockIdx.x] = buffer_s[threadIdx.x];
 }

 output[i] = buffer_s[threadIdx.x];

Incorrect!
Different threads are reading and writing the

same data location without synchronizing

Copyright © 2022 Elsevier

Kogge-Stone Parallel (Inclusive) Scan

x0 x1 x2 x3 x4 x5 x6 x7

x0 x0..x1 x1..x2 x2..x3 x3..x4 x4..x5 x5..x6 x6..x7

x0 x0..x1 x0..x2 x0..x3 x1..x4 x2..x5 x3..x6 x4..x7

x0 x0..x1 x0..x2 x0..x3 x0..x4 x0..x5 x0..x6 x0..x7

Thread 1 may
update value at
index 1 before

thread 2 reads it

Solution: wait for
everyone to read
before updating

Copyright © 2022 Elsevier

Kogge-Stone Parallel (Inclusive) Scan Code

 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;

 __shared__ float buffer_s[BLOCK_DIM];
 buffer_s[threadIdx.x] = input[i];
 __syncthreads();

 for(unsigned int stride = 1; stride <= BLOCK_DIM/2; stride *= 2) {
 float v;
 if(threadIdx.x >= stride) {
 v = buffer_s[threadIdx.x - stride];
 }
 __syncthreads();
 if(threadIdx.x >= stride) {
 buffer_s[threadIdx.x] += v;
 }
 __syncthreads();
 }

 if(threadIdx.x == BLOCK_DIM - 1) {
 partialSums[blockIdx.x] = buffer_s[threadIdx.x];
 }

 output[i] = buffer_s[threadIdx.x];

Wait for everyone to read
before writing

Copyright © 2022 Elsevier

True and False Dependences

 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;

 __shared__ float buffer_s[BLOCK_DIM];
 buffer_s[threadIdx.x] = input[i];
 __syncthreads();

 for(unsigned int stride = 1; stride <= BLOCK_DIM/2; stride *= 2) {
 float v;
 if(threadIdx.x >= stride) {
 v = buffer_s[threadIdx.x - stride];
 }
 __syncthreads();
 if(threadIdx.x >= stride) {
 buffer_s[threadIdx.x] += v;
 }
 __syncthreads();
 }

 if(threadIdx.x == BLOCK_DIM - 1) {
 partialSums[blockIdx.x] = buffer_s[threadIdx.x];
 }

 output[i] = buffer_s[threadIdx.x];

This synchronization enforces a false dependence
(we only need to finish reading before others write

because we are using the same buffer)

This synchronization enforces a true dependence
(we must finish writing before others can read)

Copyright © 2022 Elsevier

Double Buffering

x0 x1 x2 x3 x4 x5 x6 x7

x0 x0..x1 x1..x2 x2..x3 x3..x4 x4..x5 x5..x6 x6..x7

x0 x0..x1 x0..x2 x0..x3 x1..x4 x2..x5 x3..x6 x4..x7

x0 x0..x1 x0..x2 x0..x3 x0..x4 x0..x5 x0..x6 x0..x7

buffer1

buffer2

buffer1

buffer2

Optimization: eliminate the synchronization that enforces a false
dependence by using separate buffers for reading and writing, and

alternate the buffers each iteration (called double buffering)

in = buffer1, out = buffer2

in = buffer2, out = buffer1

in = buffer1, out = buffer2

Threads not adding
must copy their values

Copyright © 2022 Elsevier

Double Buffering Code

 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;

 __shared__ float buffer1_s[BLOCK_DIM];
 __shared__ float buffer2_s[BLOCK_DIM];
 float* inBuffer_s = buffer1_s;
 float* outBuffer_s = buffer2_s;
 inBuffer_s[threadIdx.x] = input[i];
 __syncthreads();

 for(unsigned int stride = 1; stride <= BLOCK_DIM/2; stride *= 2) {
 if(threadIdx.x >= stride) {
 outBuffer_s[threadIdx.x] =
 inBuffer_s[threadIdx.x] + inBuffer_s[threadIdx.x - stride];
 } else {
 outBuffer_s[threadIdx.x] = inBuffer_s[threadIdx.x];
 }
 __syncthreads();
 float* tmp = inBuffer_s;
 inBuffer_s = outBuffer_s;
 outBuffer_s = tmp;
 }

 if(threadIdx.x == BLOCK_DIM - 1) {
 partialSums[blockIdx.x] = inBuffer_s[threadIdx.x];
 }

 output[i] = inBuffer_s[threadIdx.x];

Copyright © 2022 Elsevier

Work Efficiency

• A parallel algorithm is work-efficient if it performs the same amount of work
as the corresponding sequential algorithm

• Scan work efficiency
• Sequential scan performs N additions

• Kogge-Stone parallel scan performs:
• log(N) steps, N - 2step operations per step

• Total: (N-1) + (N-2) + (N-4) + … + (N-N/2)

 = N*log(N) - (N-1) = O(N*log(N)) operations

• Algorithm is not work efficient

• If resources are limited, parallel algorithm will be slow because of low work
efficiency

Copyright © 2022 Elsevier

Brent-Kung Parallel (Inclusive) Scan

x0 x0..x1 x2 x0..x3 x4 x4..x5 x6 x0..x7

x0 x0..x1 x2 x0..x3 x4 x0..x5 x6 x0..x7

x0 x0..x1 x0..x2 x0..x3 x0..x4 x0..x5 x0..x6 x0..x7

x0 x1 x2 x3 x4 x5 x6 x7

x0 x0..x1 x2 x2..x3 x4 x4..x5 x6 x6..x7

x0 x0..x1 x2 x0..x3 x4 x4..x5 x6 x4..x7

Reduction Stage

Post-Reduction Stage

Copyright © 2022 Elsevier

Kogge-Stone vs. Brent-Kung

x0 x0..x1 x2 x0..x3 x4 x4..x5 x6 x0..x7

x0 x0..x1 x2 x0..x3 x4 x0..x5 x6 x0..x7

x0 x0..x1 x0..x2 x0..x3 x0..x4 x0..x5 x0..x6 x0..x7

x0 x1 x2 x3 x4 x5 x6 x7

x0 x0..x1 x2 x2..x3 x4 x4..x5 x6 x6..x7

x0 x0..x1 x2 x0..x3 x4 x4..x5 x6 x4..x7

x0 x1 x2 x3 x4 x5 x6 x7

x0 x0..x1 x1..x2 x2..x3 x3..x4 x4..x5 x5..x6 x6..x7

x0 x0..x1 x0..x2 x0..x3 x1..x4 x2..x5 x3..x6 x4..x7

x0 x0..x1 x0..x2 x0..x3 x0..x4 x0..x5 x0..x6 x0..x7

Copyright © 2022 Elsevier

Work Efficiency

• Recall: Kogge-Stone
• log(N) steps

• O(N*log(N)) operations

• Brent-Kung
• Reduction stage:

• log(N) steps

• N/2 + N/4 + … + 4 + 2 + 1 = N-1 operations

• Post-Reduction stage:
• log(N)-1 steps

• (2-1) + (4-1) + … + (N/2-1) = (N-2) - (log(N)-1)

• Total:
• 2*log(N)-1 steps

• (N-1) + (N-2) - (log(N)-1) = 2*N – log(N) – 2 = O(N) operations

• Brent-Kung takes more steps but is more work-efficient

• So which one is faster?

Copyright © 2022 Elsevier

References

• Wen-mei W. Hwu, David B. Kirk, and Izzat El Hajj. Programming Massively
Parallel Processors: A Hands-on Approach. Morgan Kaufmann, 2022.

