Psychosocial Factors That Contribute to Problematic Phone Use While Driving
Kyle Hickerson, M.A. – George Mason University
Yi-Ching Lee, Ph.D. – George Mason University
Background
Key Measures
Hypotheses
Fear of Missing Out
Need to Belong
Self-Regulation
Boredom Proneness
Phone Attachment
Habitual Use
Neuroticism
General ICT Difference
App Use While Driving
H2a
H2b
H2c
H2d
H2e
H2f
H2g
H4a
H3
H4b
H4c
H4d
H4e
H4g
H4f
Method
Results – ICT Use Before & During the Pandemic
Daily ICT Use (Hours)
Results – Confirmatory Factor Analysis
Results - CFA
BD 1
SR 1
SR 2
SR 4
SR 6
SR 8
SR 10
NTB2
NTB5
NTB8
NTB9
NTB10
FM
9
Self Reg
0.83
0.46
0.60
0.49
0.53
0.66
0.61
NTB
0.80
0.69
0.87
0.95
0.97
0.72
Hab Use
HB 1
HB 3
HB 5
HB 7
HB 9
HB 11
PA 1
PA 2
PA 3
PA 4
0.94
1.07
1.03
1.10
0.93
0.84
Perc Attch
1.08
1.23
1.04
1.10
-0.20
-0.056
-0.071
0.21
0.31
0.632
Results – a-path
Predictor | t(1,362) | p | b | Lower 95% | Upper 95% | Adjusted-R2 |
Self-Regulation | -1.359 | 0.175 | -0.07 | -0.17 | 0.031 | 0.2% |
Need to Belong | 1.795 | 0.074 | 0.23 | -0.02 | 0.48 | 0.6% |
Habitual Use | 0.75 | 0.454 | 0.09 | -0.15 | 0.33 | 0% |
Perceived Attachment | 1.495 | 0.136 | 0.19 | -0.06 | 0.433 | 0.34% |
Results – b-path
Outcome | χ2 (1, 4) | p | Odds Ratio | Lower 95% | Upper 95% | Nagelkerke R2 |
A/V Calling | 3.7 | 0.053 | 1.10 | 1.00 | 1.21 | 1.41% |
Texting | 4.0 | 0.044 | 1.10 | 1.00 | 1.22 | 1.59% |
Navigation | 0.51 | 0.47 | 1.03 | 0.94 | 1.13 | 0.19% |
Music | 0.037 | 0.85 | 1.01 | 0.92 | 1.11 | 0.01% |
4.5 | 0.03 | 1.13 | 1.01 | 1.27 | 2.07% | |
Social Media | 1.0 | 0.32 | 1.06 | 0.94 | 1.18 | 0.44% |
News or Radio | 0.51 | 0.47 | 1.03 | 0.94 | 1.13 | 0.19% |
Results – c-path
Predictor | Outcome | χ2 (1, 4) | p | Odds ratio | Lower 95% | Upper 95% | Nagelkerke R2 |
Need to Belong | 8.2 | 0.004 | 1.554 | 1.15 | 2.11 | 3.96% | |
Need to Belong | Social Media | 10.4 | 0.001 | 1.589 | 1.20 | 2.11 | 4.70% |
Need to Belong | News or Radio | 12.9 | 0.003 | 1.640 | 1.256 | 2.16 | 5.60% |
Perceived Attachment to Phone | 9.9 | 0.0016 | 1.79 | 1.27 | 2.63 | 5.48% | |
Perceived Attachment to Phone | Social Media | 5.7 | 0.017 | 1.45 | 1.08 | 2.00 | 2.72% |
Conclusion
References
[1] National Center for Statistics and Analysis. (2021, May). Early estimate of motor vehicle traffic fatalities in 2020 (Crash•Stats Brief Statistical Summary. Report No. DOT HS 813 115). National Highway Traffic Safety Administration.
[2] Ziemba, E. (2019). The Contribution of ICT Adoption to the Sustainable Information Society. Journal of Computer Information Systems, 59(2), 116–126. https://doi.org/10.1080/08874417.2017.1312635
[3] Jalagat, R. C., & Aquino, P. G. (2022). The Usefulness of Information Communication Technology (ICT) in the Recruitment and Selection of Employees During Covid 19. In P. G. Aquino Jr. & R. C. Jalagat Jr. (Eds.), Effective Public Administration Strategies for Global “New Normal” (pp. 19–34). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-3116-1_2
[4] Espino-Díaz, L., Fernandez-Caminero, G., Hernandez-Lloret, C.-M., Gonzalez-Gonzalez, H., & Alvarez-Castillo, J.-L. (2020). Analyzing the Impact of COVID-19 on Education Professionals. Toward a Paradigm Shift: ICT and Neuroeducation as a Binomial of Action. Sustainability, 12(14), 5646. https://doi.org/10.3390/su12145646�
[5] Robič M, Rotar Pavlič D. COVID-19 and Care for the Elderly in Long-Term Care Facilities: The Role of Information Communication Technology. Acta Med Acad. 2021 Dec;50(3):414-422. doi: 10.5644/ama2006-124.363. PMID: 35164520.
[6] Lee, Y.-C., Malcein, L. A., & Kim, S. C. (2021). Information and Communications Technology (ICT) Usage during COVID-19: Motivating Factors and Implications. International Journal of Environmental Research and Public Health, 18(7). https://doi.org/10.3390/ijerph18073571
[7] Vodanovich, S. J., Wallace, J. C., & Kass, S. J. (2005). A Confirmatory Approach to the Factor Structure of the Boredom Proneness Scale: Evidence for a Two-Factor Short Form. Journal of Personality Assessment, 85(3), 295–303. https://doi.org/10.1207/s15327752jpa8503_05
[8] van Deursen, A. J. A. M., Bolle, C. L., Hegner, S. M., & Kommers, P. A. M. (2015). Modeling habitual and addictive smartphone behavior: The role of smartphone usage types, emotional intelligence, social stress, self-regulation, age, and gender. Computers in Human Behavior, 45, 411–420. https://doi.org/10.1016/j.chb.2014.12.039
[9] Bayer, J. B., Campbell, S. W., & Ling, R. (2016). Connection Cues: Activating the Norms and Habits of Social Connectedness. Communication Theory, 26(2), 128–149. https://doi.org/10.1111/comt.12090
�[10] Caci, B., Miceli, S., Scrima, F., & Cardaci, M. (2020). Neuroticism and Fear of COVID-19. The Interplay Between Boredom, Fantasy Engagement, and Perceived Control Over Time. Frontiers in Psychology, 11. https://www.frontiersin.org/articles/10.3389/fpsyg.2020.574393
[11] Leary, M. R., Kelly, K. M., Cottrell, C. A., & Schreindorfer, L. S. (2013). Construct Validity of the Need to Belong Scale: Mapping the Nomological Network. Journal of Personality Assessment, 95(6), 610–624. https://doi.org/10.1080/00223891.2013.819511
[12] Przybylski, A. K., Murayama, K., DeHaan, C. R., & Gladwell, V. (2013). Motivational, emotional, and behavioral correlates of fear of missing out. Computers in Human Behavior, 29(4), 1841–1848. https://doi.org/10.1016/j.chb.2013.02.014
References
[13] Weller, J. A., Shackleford, C., Dieckmann, N., & Slovic, P. (2013). Possession attachment predicts cell phone use while driving. Health Psychol, 32(4), 379–387. PubMed. https://doi.org/10.1037/a0029265
[14] Diehl, M., Semegon, A. B., & Schwarzer, R. (2006). Assessing Attention Control in Goal Pursuit: A Component of Dispositional Self-Regulation. Journal of Personality Assessment, 86, 306–317. https://doi.org/10.1207/s15327752jpa8603_06
[15] Rammstedt, B., & John, O. P. (2007). Measuring personality in one minute or less: A 10-item short version of the Big Five Inventory in English and German. Journal of Research in Personality, 41, 203–212. https://doi.org/10.1016/j.jrp.2006.02.001