
Sorting Algorithms
MSJ Computer Science Club

HAHA NO ONE’S GRADING THIS SO I DON’T HAVE TO BE “ARTISTIC” WITH DECORATED SLIDES!!!!



The proofs and all the mathematical stuff will be at 
the end of the lecture, so people who don’t care 

don’t have to listen through it



O(n2) algorithms
Selection sort: pick the smallest number and put it at the front of the array. Then 
the next smallest and so on. It’s obvious why this works.

Bubble sort is more interesting. At each iteration, go through the array and if two 
adjacent numbers are out of order, swap them. Once no changes are made in an 
entire pass, we know it’s sorted

Round 1: 3 1 4 2 -> 1 3 4 2 -> 1 3 4 2 -> 1 3 2 4

Round 2: 1 3 2 4 -> 1 2 3 4

Round 3: 1 2 3 4



Bubble Sort continued
We think bubble sort is irrelevant, but then this happens

So a couple more things about bubble sort

1. After the ith round, the largest i elements are in their correct positions: this is 
because at each round, the largest element moves right in every swap until it 
reaches its place

2. Each element can only move left one position per swap
3. It takes exactly max(distance right of correct position) rounds to sort

O(n^2) because for instance consider having 1 at the very right end and note 3



Insertion Sort
Iterate from 1 to n in the array
Compare the element to the previous 
element and keep going left until you get 
to something that’s smaller: insert it 
there, moving everything else up 1, so 
the first i elements are sorted 

Binary version allows you to find the 
placing for it in O(log n) moves instead 
of O(n)



Insertion Sort Analysis
Worst case: O(n2): reverse order
Average case: O(n2): O(n) moving elements each for n times
Best case: O(n): already sorted

Pros
● Good when array close to sorted
● Fast for small array sizes
● O(1) space

Cons
● O(n2). Nuff said



O(n log n) algorithms —  quick sort
1. Choose some element as a pivot — for now, we’ll go with the last element
2. Put all elements smaller than the pivot to the left of it and all elements larger than 

the pivot to the right of it — this is done in O(n) time and is called the partition
3. Call quicksort on the left side of the pivot and the right side of the pivot

Ty Geeksforgeeks for nice diagram!



Quick sort — partitioning
1. Choose the end element as the 

pivot, and let the part of the array 
that we’re sorting be [low, high]

2. Go from left to right. Keep a 
pointer that starts at low - 1. If you 
see an element ≤ pivot, increment 
the pointer and swap the current 
position’s element with the 
pointer’s 

3. At the end, swap the pivot element 
with the pointer+1 position

Current order Compare ptr i

2  6  3  5  1  4 2 ≤ 4 -1 0

2  6  3  5  1  4 6 > 4 0 1

2  6  3  5  1  4 3 ≤ 4 0 2

2  3  6  5  1  4 5 > 4 1 3

2  3  6  5  1  4 1 ≤ 4 1 4

2  3  1  5  6  4 Move pivot 2+1 
= 3

5

2  3  1  4  6  5



Quick sort Analysis
Best Case: O(n log n) time
Average Case: O(n log n) time 
Worst Case: O(n2) time
● This happens if the pivot is the smallest or largest element each time

Pros
● In practice, is faster than merge sort and heap sort because “its inner loop 

can be efficiently implemented on most architectures”
● No extra space required
● Lots of optimizations: better pivot selection in particular 

https://www.techiedelight.com/boost-quicksort-performance/
Cons
● That worst case

https://www.techiedelight.com/boost-quicksort-performance/


O(n log n) algorithms — merge sort
1. Divide the array into two halves
2. Call mergesort on each half
3. Merge the two sorted halves into 

one sorted part



Merge sort — merge function
Have two pointers for the positions of each 
of the halves that we are on and a temporary 
array to store the final order

1. Compare the elements at both pointers
2. Put the smaller element into the lowest 

position in the temp array and increment 
that pointer

3. Repeat until one of the pointers reaches 
the end

4. Then put in all the elements of the other 
half until that pointer reaches the end

Left 
half

Right 
half

compare i j

3  7  8 2  6  9 3 > 2 0 0

3  7  8 2  6  9 3 ≤ 6 0 1

3  7  8 2  6  9 7 > 6 1 1

3  7  8 2  6  9 7 < 9 1 2

3  7  8 2  6  9 8 < 9 2 2

3  7  8 2  6  9 Add 9 to 
temp

3 2

Temp

2 3 6 7 8 9



Merge sort analysis
Best case: O(n log n)
Average case: O(n log n)
Worst case: O(n log n)
Pros
● Consistent
● Useful for sorting linked lists because you can insert wherever, meaning 

we don’t need a temporary array
● inversion counting
● Used when you have large amounts of data Don’t ask me why idk real life application 

stoof
Cons
● Extra space 
● Slightly slower



O(n log n) algorithms — Heap sort
First: a complete binary tree is a binary tree in which every non-leaf node has 
two children

A heap is a complete binary tree in which the parent either has a larger value than 
all its children or a smaller value, called max heap and min heap respectively

Complete binary tree Max heap, min heap



Heap sort
1. Build a max heap from the given array
2. Swap the root node and the last node in the heap
3. Remove the last node / put it onto the final ordering on the left
4. Heapify
5. Repeat steps 2 to 4 until all the tree is just one node that we put on the final 

array



Heapify (a node)
Assumes that the two subtrees of the node are max heaps already

1. If the node is the largest of it and its children, don’t do anything; otherwise, 
swap it with the largest child

2. Heapify the child’s subtree

Results in a max heap: the node + its children’s subtrees



Heapify (a node)
Assumes that the two subtrees of the node are max heaps already

1. If the node is the largest of it and its children, don’t do anything; otherwise, 
swap it with the largest child

2. Heapify the child’s subtree

Results in a max heap: the node + its children’s subtrees



Building the max heap
for (int i = n / 2 - 1; i >= 0; i--)

      heapify(arr, n, i);

Heapify the non-leaf nodes going in backwards order of position

This makes sure that when we heapify a node, its children and their children have 
already been heapified, so the subtrees are sorted



Heap sort — reminder of what the algorithm was
1. Build a max heap from the given array
2. Swap the root node and the last node in the heap
3. Remove the last node / put it onto the final ordering on the left
4. Heapify the root
5. Repeat steps 2 to 4 until all the tree is just one node that we put on the final 

array



Heap sort — a really good illustration
https://www.programiz.com/dsa/heap-sort

https://www.programiz.com/dsa/heap-sort


Heap sort analysis
Worst case: O(n log n)
Average case: O(n log n)
Best case: O(n log n)
Pros
● Consistent
● No extra space
● Easy to extract the largest or smallest few elements from the list without 

disturbing the remaining elements — priority queue (Fibonacci heaps though)
● Can sort nearly sorted / k-sorted arrays fast — O(k) + O((n-k)*logK)

Cons
● Worst of the 3 — bad constant factor



Introsort 
used in the c++ built in sort function
Combination of quicksort, heapsort, and insertion sort

“So first it creates a partition. Three cases arises from here.
1. If the partition size is such that there is a possibility to exceed the maximum depth limit then 

the Introsort switches to Heapsort. We define the maximum depth limit as 2*log(N)
2. If the partition size is too small then Quicksort decays to Insertion Sort. We define this cutoff 

as 16 (due to research). So if the partition size is less than 16 then we will do insertion sort.
3. If the partition size is under the limit and not too small (i.e- between 16 and 2*log(N)), then it 

performs a simple quicksort.”
Keeps the speed of quicksort in the average time and the worst case time complexity of heap sort
Heap sort is used over merge sort because O(1) space complexity
Insertion sort is the fastest way to sort small arrays



Timsort 
Used in (some of) java’s and python’s built in sort functions

“We divide the Array into blocks known as Run. 
We sort those runs using insertion sort one by one and then merge those runs using 
the combine function used in merge sort. 
The size of the run may vary from 32 to 64 depending upon the size of the array. 
Note that the merge function performs well when size subarrays are powers of 2. 
The idea is based on the fact that insertion sort performs well for small arrays.”



Implementing sort in your code — c++
#include <algorithm> for the sort function
Arrays: sort(arr, arr+n); Vectors/most other containers: sort(v.begin(), v.end());
Decreasing: sort(arr, arr+n, greater<int>);

Pairs (pair<int, int>) get sorted by the first number, then the second as tiebreakers

For custom objects: make a compare function:
Bool comp(const thing &a, const thing &b)
{

Return a.size < b.size
}
sort(arr, arr+n, comp);



Implementing sort in your code — java
Array a[]: Arrays.sort(a); Lists: Collections.sort(a);

Custom comparator: 2 methods
1. Create a Comparator class

Class CompInt implements Comparator {
@override
public int compare(Integer a, Integer b) {

return (int)a - (int)b;
}

}

Example: Arrays.sort(a, new CompInt()); //does custom sort on Integer array
Collections.sort(nodes); //where nodes is a list of Nodes uses provided comparison function

2. Using a custom class, use Comparable interface
Class Node implements Comparable {

int val;
  @override
  public int compareTo(Node n) {

return this.val - n.val;
  }

}



Implementing sort in your code — python
list.sort(reverse=True|False, key=myFunc)



Times to use sorting
● To traverse some values from “left” to “right” physically

○ X-coordinates 
○ Time — chronological order
○ Sweepline

● To traverse some values from small to large
○ Amount of milk
○ Cost
○ Size
○ Edge length: kruskal’s

● To find the largest ____ values, which you know will give you the best output
○ Often in conjunction with greedy algorithms

● Literally when you’re doing any usaco problem



Example sorting: USACO 2018 Feb Silver Problem 1. Rest Stops



Solution
Main claim: the max occurs when Bessie stops for as long as possible at the fields 
with the maximum tastiness value of the fields to the right

● Basically greedy 
● If she didn’t stop for as long as possible on one of these fields, and instead spends more time t on a 

later field: we can have her spend t more time on the first field and t less time on that field and she’ll 
still be ahead of Farmer John but she’ll have gotten more tastiness

Pseudocode
Keep pairs of (position, tastiness)
Sort by position
Go from right to left and keep track of the max tastiness for that segment: if tastiness = maxtastiness, add 
this onto our to_visit places
Iterate through to_visit places

Time we spend there = distance from previous place * (r_F - r_B)
Add to the total

Print the total



Non-comparison based algorithms — Counting sort
If you have n integers in the range 1 to k

int frequency[k+1]  //frequency array of size k+1
For each element:

Frequency[element] += 1 

int final_array[k+1] //our sorted array, empty right now
For (i from 1 to k):

Add on frequency[i] many i’s to final_array

O(n+k) time, O(k) memory

1 5 3 3 7 8 2 2

Frequency:
1: 1
2: 2
3: 2
4: 0
5: 1
6: 0
7: 1
8: 1

Final_array:
1
1 2 2
1 2 2 3 3
1 2 2 3 3 
1 2 2 3 3 5
1 2 2 3 3 5 7
1 2 2 3 3 5 7 8



Example: USACO 2019 US Open Contest, Gold
Problem 2. I Would Walk 500 Miles sorting the edges for Kruskal’s

 We have edges of length  (2019201913x+2019201949y) mod 2019201997 for all 
1 ≤ x, y ≤ N, N ≤ 7500

This is -(84x + 48y), which goes up to 84 * 7500 + 48 * 7500 = 990,000

We can do a counting sort: loop through the N2 x and y values and calculate 
frequency, then go backwards through the frequency table in multiples of gcd(84, 
48) = 12

990,000/12 = 82,500 = much smaller than the N2 log N2 that we would normally 
need, so we can still use Kruskal’s instead of Prim’s



Topological Sort
For a DAG (directed, acyclic graph), find some ordering of the vertices such that if 
there is an edge from a -> b, b occurs after a in the ordering. There are multiple 
such orderings

Way 1: Kahn’s algorithm
1. Find all nodes with indegree 0 and add 

them to a queue
2. Take a node from this queue and 

remove it from the graph by changing 
the indegrees of all its outneighbors by 
-1

3. Add new points with indegree 0 to the 
queue and repeat until empty

Way 2: dfs
Keep a visited array and a stack to store the 
final ordering
1. If element not visited, call dfs on it
2. In dfs

a. Mark as visited
b. Call dfs on non-visited neighbors
c. Add to the stack

Both O(V + E) time with space O(V)



Topological Sort

Dfs way illustrated



The only useful algorithm — bogosort
while not isInOrder(deck):

    shuffle(deck)

An analogy for the working of the latter version is to sort a deck of cards by 
throwing the deck into the air, picking the cards up at random, and repeating the 
process until the deck is sorted.



The only useful algorithm — bogosort
Pros

● Fastest implementation
● Best case scenario is O(n) time
● O(1) memory
● Worst case scenario isn’t O(n^2)
● You will never encounter the worst case scenario

Cons

● None

All good modern languages use bogosort as their main sort function and so 
should you



Proofs



Proof of the out of sorts problem
Helpful Claim: after each swap check in the bubble sort, the number on the right 
of the pair is the largest number from that point and left of the array (currently)
● the larger number of the two always goes to the right after a swap (you can formalize 

this with induction)
Corollary to the Helpful Claim: Any number i with a number j to the left of it and greater 
than it will move left in the current round
● By our helpful claim, the number swapped to the position left of i is ≥ j, so i will move left

Key claim 1: any number (call it i) with positive distance right of its correct position 
will move left in the current round
● If i is right of its correct position, there must be a number to the left of i that’s larger, then 

apply the corollary



Proof of the out of sorts problem
Key claim 2: if a number (i) is in its correct position, it will never move to the right of 
its correct position again
● For this to happen, there would have to be an element past position i that is 

smaller than i, but this means there is an element before i that is greater than i 
(since there are i -1 positions and i-2 elements smaller than i that can be there), 
so apply the corollary: i will get swapped to the left instead and can’t move 
again that round

Thus, in max(distance) turns, every number will be in a position ≤ its correct 
position: 1 will be in position ≤ 1 ⇒ 1 will be in position 1, 2 will be in position ≤ 2 ⇒ 
2 will be in position 2, and so on.

If you want a similar problem, check out HMMT February 2018 Combinatorics Problem 7



Induction, briefly
A proof method for proving things work for all positive 
integers in some range

First, we have to prove that it holds true for base 
case(s), usually n = 1 (the first domino falls)

Inductive step: Then, we prove that if it’s true for k = n 
, then it’s true for k = n+1:
● Each domino knocks down the next

Strong induction is we prove that if it’s true for k ≤ n, 
then it’s true for k =n+1
● We’re saying that we need all the previous 

dominos to have fallen down

The quintessential dominos 
picture



Quick sort — why it works
Partition:
● Everything ≤ the pivot is swapped to a position left of or equal to the pointer
● That means everything right of the pointer is greater than the pivot except for the 

pivot itself
● So we just squish the pivot between the left and right sides through that last 

swap
Recursive step: 
● Strong induction: base case: quicksort works for n = 1 obviously. 
● Assume it works for k ≤ n. Then we prove it works for n+1
● We split into two parts and apply quicksort to each. 

○ Each part gets sorted and the left part is all numbers smaller than pivot and the right part is all 
numbers larger than pivot: they’re in sorted order too



Quick sort — time complexity
Worst case: pivot is the largest element each time, so we have O(n) partitions and 
each takes O(n) time for O(n2)

Best case: we split in half every time (this is the most we can reduce the size by), 
so we have O(log n) partitions and each take O(n) time

Average case: non-rigorously, it’s just because each time we divide it’s by about 2 
(and if it was like 5/4 or something change of base is a thing)

A little bit more rigorously on the next slide 



Quick sort — average time complexity
Give me a sec to switch over to another window lol

https://www.overleaf.com/read/zgcjhrznrcfc

https://www.overleaf.com/read/zgcjhrznrcfc


Merge sort — why it works
Merge function
The key here is that the two halves are themselves already sorted.
Claim: at each point, we take the smallest element available
● All elements left of the two pointers are already taken, since only when we 

take the element do we move the pointer past it
● All elements right of the two pointers are larger than at least one of the 

elements in the pointers (the one in its half)
● Thus the smallest remaining element is the smaller of the two at the pointers

Proving that the overall algorithm works is similar: we use induction and since 
mergesort works on k = n/2, the two halves are sorted and the merge results in a 
sorted final array 



Heap sort — why it works
● Heapifying V resulting in a max heap

○ Induction on the size of the tree: base case is just 1 node, obvious
○ Inductive step: the max thing applies to V and its two children once we do the swap, and by 

the inductive hypothesis the subtree of the child we swap with will be made into a max heap

● Building the max heap
○ When you heapify V, its children have already been heapified, thus the subtrees are max 

heaps as required

● The algorithm itself
○ The root is the largest element in a max heap (can prove by induction — larger than children 

who are the largest in their subtrees)
○ After we swap the last element in and get rid of it, the two subtrees are still max heaps
○ Heapifying the root thus makes the whole thing a max heap again



Heap sort — Time complexity
Heapifying a node takes O(log n) time in the worst case because we may need to 
do one swap per level of the binary tree

When building, we heapify for n/2 nodes, so n/2 * log n = O(n log n)

For the sorting part, we heapify n times, for n * log n = O(n log n) time

Since these two parts are done in sequence, overall is O(n log n) 

(you can probably see now why the constant factor is poor) 



Kahn’s algorithm — why it works
A DAG G has at least one vertex with indegree 0 and one vertex with outdegree 0.
● Let the longest path in G go from u to v. We know this exists because there are no 

cycles. If u does not have indegree 0, then we could’ve enlarged the path, since the 
neighbor couldn’t be anything already on the path or we would have a cycle. If v does 
not have outdegree 0, we can similarly enlarge the path

After we remove a node, the graph will remain a DAG — you can’t create cycles 
by removing edges
Thus at each point in the algorithm we will be able to find an appropriate node and 
remove it

We get the a -> b means a goes before b condition from the fact that if something 
has indegree 0, it means all of its in-neighbors have already been added



Dfs for topo sort — why it works
When we do dfs for an element V, all its neighbors
1. Have already been visited and so are before it in the stack
2. Get dfs called for them. Before this dfs call returns to V, this neighbor gets 

added to the stack
Thus by the time we add V to the stack, its neighbors are already all in it



Proof that comparison algorithms cannot be better 
than O(n log n) time

http://www.bowdoin.edu/~ltoma/teaching/cs231/fall04/Lectures/sortLB.pdf

http://www.bowdoin.edu/~ltoma/teaching/cs231/fall04/Lectures/sortLB.pdf


Thanks for listening!
Now I’m tired and hungry


