# Transistor Amplifier Terminologies

# Amplifier Terminologies

#### Gain of the Amplifier

• The ratio of the output quantity to the input quantity of the amplifier is called as Gain of the Amplifier.

#### Gain of Multistage Amplifier

• Let us consider three amplifiers having respective gain of G1, G2 and G3.

The total gain of the amplifier is

 $G = G1 \times G2 \times G3$ 

• The gain of the multistage amplifier G is less than produce of G1 × G2 × G3 due to loading of next stages.

#### **Decibel Gain**

• The gain of the amplifier is very large therefore it is represented by common

logarithm (base 10). The unit of gain is bel or db.

### Power gain

• The ratio of output power to the input power in log to the base 10 is called as power gain of the amplifier.

• Power Gain = 
$$Log_{10} (P_{OUT} / P_{IN})$$
 bel

1 bel = 10 db = 10 
$$\text{Log}_{10}$$
 (  $P_{\text{OUT}} / P_{\text{IN}}$  ) db  
1 bel = 10 db

#### **Voltage Gain**

- The ratio of the output voltage to the input voltage in log of base 10 is called as voltage gain of the amplifier.
- Let  $P_{OUT} = V_{OUT}^2 / R$
- $P_{IN} = V_{IN}^2 / R$

Voltage gain = 10  $Log_{10}$  (  $P_{OUT} / P_{IN}$  ) db

= 10 
$$\log_{10} [V_{OUT}^2 / R] / [V_{IN}^2 / R] db$$

= 20 
$$Log_{10}$$
 (  $V_{OUT} / V_{IN}$  ) db

#### **Current Gain**

• The ratio of the output current to the input current in log of base 10 is called

as voltage gain of the amplifier.

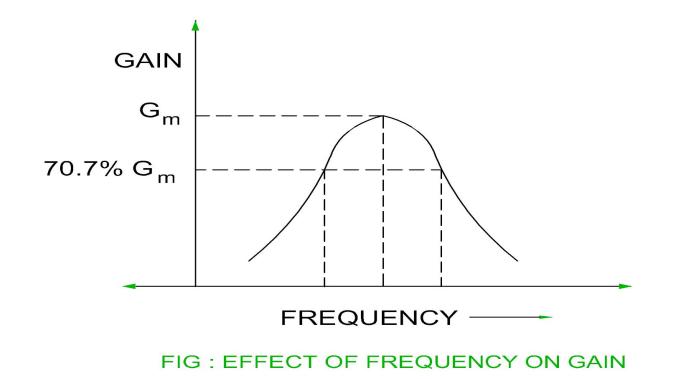
Let  $P_{OUT} = I_{OUT}^2 R$  $P_{IN} = I_{IN}^2 R$ 

• Current Gain = 10  $Log_{10}$  (  $P_{OUT} / P_{IN}$  ) db

= 10 
$$Log_{10} [I_{OUT}^{2}R] / [I_{IN}^{2}R] db$$

= 20 
$$\text{Log}_{10}$$
 (  $\text{I}_{\text{OUT}}$  /  $\text{I}_{\text{IN}}$  )

| Power Gain   | Log <sub>10</sub> ( P <sub>OUT</sub> / P <sub>IN</sub> ) bel | 10 Log <sub>10</sub> ( P <sub>OUT</sub> / P <sub>IN</sub> ) db                  |
|--------------|--------------------------------------------------------------|---------------------------------------------------------------------------------|
| Current Gain | Log <sub>10</sub> ( I <sub>OUT</sub> / I <sub>IN</sub> ) bel | 20 $\mathrm{Log}_{\mathrm{10}}$ ( I $_{\mathrm{OUT}}$ / I $_{\mathrm{IN}}$ ) db |
| Voltage Gain | Log <sub>10</sub> ( V <sub>OUT</sub> / V <sub>IN</sub> ) bel | 20 Log <sub>10</sub> ( V <sub>OUT</sub> / V <sub>IN</sub> ) db                  |


#### Bandwidth

- It is range of frequencies over which the voltage gain is equal to or greater than 70.7% of the maximum gain.
- The f1 and f2 is range of frequencies over which the gain is equal / greater

than 70.7% of the maximum gain.

Where f1 = Lower cut off frequency and f2 = Higher cut off frequency

Bandwidth = f2 - f1



• It is important that the signal frequencies lie between f1 and f2 for distortion less amplification.

#### Bandwidth in terms of db

Let us consider that the maximum gain of the amplifier is 100.

Fall in voltage gain from 100 to 70.7%

= 20 
$$\text{Log}_{10}$$
 ( 100 ) – 20  $\text{Log}_{10}$  ( 70.7 ) db

• The bandwidth of the amplifier is defined as the range of frequency over

### which the voltage gain fall by 3 db from the maximum gain.

• The frequency f1 or f2 is called as half power frequency or 3 db frequency.

# Thank You www.myelectrical2015.com