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Convolutional Neural Nets
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Convolution
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https://en.wikipedia.org/wiki/Convolution#/media/File:Convolution_of_spiky_function_with_box2.gif
https://en.wikipedia.org/wiki/Convolution#/media/File:Convolution_of_spiky_function_with_box2.gif
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https://commons.wikimedia.org/wiki/File:3D_Convolution_Animation.gif

Discrete 2D Convolution as a Feature Detector
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Discrete 2D Convolution as a Feature Detector
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Discrete 2D Convolution as a Feature Detector

g(x.y)= f(x.y)=
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Discrete 3D Convolution
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Hierarchical Feature Detection
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Hierarchical Feature Detection
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Convolutional Neural Nets

Conv. Module #1 Conv. Module #2 Classification

output: cat? (y/n)

conv2d maxpool conv2d maxpool fully fully
Input + RelLU + RelLU connected  connected
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Fully Convolutional Neural Nets
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First, a bad idea:

\CNN = Remember this?
\‘\]\ -ch;
Why don't we do this
with a convolution!
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https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf

Fully Convolutional Neural Nets

e Convolutional Neural Nets (CNNs) produce 1 prediction for NxM (fixed) inputs

e FCNNSs can predict 1x1, NxM or virtually any output size for NxM inputs.

e For narrow receptive fields, they're a computationally efficient way to create
things like per-pixel dense networks by way of NxM depthwise convolutions.
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Atrous Convolution
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Atrous Convolution
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(a) Going deeper without atrous convolution.

rate=2 rate=4 rate=8 rate=16
Block1 Block2 Block3 Block4 Block5 Block6 Block7
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" output
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(b) Going deeper with atrous convolution. Atrous convolution with rate > 1 is applied after block3 when output_stride = 16.
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We can train a FCNN with
tile- Ievel IabelsI
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Atrous Convolution

Atrous convolution captures features at different scales 12 120|130 | 0
without loss of information. S 2> [0 | 5, Bl 20 | 30
Technically we wouldn't even need encoder->decoder 34|70 (37 | 4 112 37
residual connections to reintroduce spatial information. 112100/ 25 | 12
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So back here...

CNN's lose spatial
information (no
residuals, no atrous
convolutions)

Computationally
expensive! If you
have point samples,
transform to FCNN.
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Practical Considerations
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Per-Pixel Dense Nets Using 1x1 Convolutions

e Rather than splitting multi-spectral patches of pixels into vectors and applying them as features to a
“dense net,” we can accomplish the same thing without the splitting.
e Has the advantage that convolutions on 2D
patches of pixels is a highly optimized
operation on GPUs and TPUs.
e Easyto translate a series of “dense layers”
to a series of 1x1 depthwise convolutions. >

e (thisis technically a FCNN!)
\/ \/

Pointwise convolution
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Overtiling

Google

Unlike FCNNs for camera imagery, we
usually want to tile predictions to cover
large projected regions (i.e. Landsat scene
sized).

We run into border artifacts because some
pixels have a receptive field extending
outside the tile, so when we produce a tiling
we can “overtile” (known as
kernelDimensions in EE and intended for a
different purpose) and crop the predictions
so that all pixels in the final predicted
mosaic have a fully-specified rf..
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Receptive Field Size
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The lower the resolution, the less relevant
an output’'s RF becomes to it's final
predicted value.

Many big FCNNs have huge RFs, but for
tasks like LULC, we very rarely need
300x300 / 512x512 labels and can get
state-of-the-art accuracy using 128x128.
Intuition is that, i.e., we don't need to see the
objects outside of a forest to know what it
is; unlike a cat’s tail that requires the
presence of kitty fase :3.

Objects are all at similar scales.




Dealing With Little Training Data
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In the cases where we have no model from
which to transfer-learn, we're not completely
out of luck.

Auto-encoders provide a means to learn the
color -> shape -> texture *CNN hierarchy in a
completely unsupervised way. From this we
can transfer learn

We can push this even further to extract
“stronger” features by making our AE
“denoising” and “sparse”.

EE’s catalog is basically an AE paradise.

Encoder

Decoder



What Am | Missing?

e Finding objects at high resolution!

e Cars, oil tanks, etc...

e There's plenty of information floating around
on this, but much high-res satellite imagery
isn't public, is often RGB, collected with a
low temporal frequency, and is perfectly
suited for more standard computer vision
models.
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