VCC
VISUAL
COMPUTING
CENTER
IVUL
DeepGCNs.org
DeepGCNs: Can GCNs go as deep as CNNs?
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
* equal contribution
DeepGCNs: Can GCNs go as deep as CNNs?
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
* equal contribution
DeepGCNs.org
Grid Data:
Grid data vs. General graphs
DeepGCNs.org
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Grid Data:
Grid data vs. General graphs
DeepGCNs.org
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Grid Data:
Grid data vs. General graphs
DeepGCNs.org
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Grid Data:
Grid data vs. General graphs
DeepGCNs.org
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Grid Data:
Grid data vs. General graphs
CNN works well
DeepGCNs.org
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Why do we need graph convolutional networks?
Grid data vs. General graphs
DeepGCNs.org
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Why we need graph convolutional networks?
Grid data vs. General graphs
DeepGCNs.org
Tremendous non-grid graph structured data
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
General Graphs:
Grid data vs. General graphs
Lots of real-world applications need to deal with Non-Grid data
DeepGCNs.org
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
General Graphs:
Grid data vs. General graphs
Lots of real-world applications need to deal with Non-Grid data
DeepGCNs.org
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
General Graphs:
Grid data vs. General graphs
Lots of real-world applications need to deal with Non-Grid data
DeepGCNs.org
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
General Graphs:
Grid data vs. General graphs
CNN doesn’t work
GCN to rescue
Lots of real-world applications need to deal with Non-Grid data
DeepGCNs.org
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
CNN vs. GCN - Recap: CNN
Slides by Thomas Kipf
DeepGCNs.org
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
CNN vs. GCN - Recap: CNN
Slides by Thomas Kipf
DeepGCNs.org
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
CNN vs. GCN - Recap: CNN
Slides by Thomas Kipf
DeepGCNs.org
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
CNN vs. GCN - Recap: CNN
Slides by Thomas Kipf
DeepGCNs.org
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
CNN vs. GCN - Recap: CNN
Slides by Thomas Kipf
DeepGCNs.org
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
CNN vs. GCN - Introduction: GCN
Slides by Thomas Kipf
DeepGCNs.org
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
CNN vs. GCN - Introduction: GCN
Slides by Thomas Kipf
DeepGCNs.org
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
CNN vs. GCN - Introduction: GCN
Slides by Thomas Kipf
DeepGCNs.org
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
CNN vs. GCN - Comparison
Convolutional Neural Network (CNN)
DeepGCNs.org
Slides by Thomas Kipf
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
CNN vs. GCN - Comparison
Convolutional Neural Network (CNN)
DeepGCNs.org
Slides by Thomas Kipf
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
CNN vs. GCN - Comparison
Convolutional Neural Network (CNN)
Graph Convolutional Network (GCN)
DeepGCNs.org
Slides by Thomas Kipf
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
CNN vs. GCN - Comparison
Convolutional Neural Network (CNN)
Graph Convolutional Network (GCN)
DeepGCNs.org
Slides by Thomas Kipf
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
CNN vs. GCN
Convolutional Neural Network (CNN)
DeepGCNs.org
Grid
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
CNN vs. GCN
Convolutional Neural Network (CNN)
Graph Convolutional Network (GCN)
DeepGCNs.org
Grid
Graph
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Kipf, T.N. and Welling, M., 2016. Semi-Supervised Classification with Graph Convolutional Networks.
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P. and Bengio, Y., 2018. Graph Attention Networks.
Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M. and Solomon, J.M., 2018. Dynamic Graph CNN for Learning on Point Clouds.
Hamilton, W.L., Ying, R. and Leskovec, J., 2017. Inductive Representation Learning on Large Graphs.
Most SOTA GCN models are no deeper than 3 or 4 layers.
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Most SOTA GCN models are no deeper than 3 or 4 layers.
Kipf, T.N. and Welling, M., 2016. Semi-Supervised Classification with Graph Convolutional Networks.
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P. and Bengio, Y., 2018. Graph Attention Networks.
Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M. and Solomon, J.M., 2018. Dynamic Graph CNN for Learning on Point Clouds.
Hamilton, W.L., Ying, R. and Leskovec, J., 2017. Inductive Representation Learning on Large Graphs.
Why?
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Why GCNs are limited to shallow structures?
Over-fitting
Over-smoothing
Vanishing Gradient
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Why GCNs are limited to shallow structures?
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Over smoothing: They prove that by repeatedly applying Laplacian smoothing many times, the features of vertices within each connected component of the graph will converge to the same values
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Training Loss of GCNs with varying depth
PlainGCNs
ResGCNs
Deeper GCNs don’t converge well.
Even a 112-layer deep GCN converges well!!!
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Training Loss of GCNs with varying depth
PlainGCNs
ResGCNs
Deeper GCNs don’t converge well.
Even a 112-layer deep GCN converges well!!!
How can we make GCNs deeper?
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Residual Graph Connections
DeepGCNs.org
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Residual Graph Connections
DeepGCNs.org
Aggregate
Update
Skip connection
An example: ResMRGCN
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Dense Graph Connections
DeepGCNs.org
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Better Receptive Field?
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Dilated Graph Convolutions
1
4
3
2
6
7
5
8
9
11
12
10
13
14
15
16
1
4
3
2
6
7
5
8
9
11
12
10
13
14
15
16
1
4
3
2
6
7
5
8
9
11
12
10
13
14
15
16
Dilated Convolution on a regular graph, e.g. 2D image
Dilated graph Convolution on an irregular graph, e.g. 3D point cloud
DeepGCNs.org
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Dilated Graph Convolutions
= dilation rate
DeepGCNs.org
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Deep Graph Convolutional Networks (GCNs)
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Experiments
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Graph Learning on 3D Point Clouds
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Stanford 3D Large-Scale Indoor Spaces Dataset
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Table 1. Comparison of ResGCN-28 with state-of-the-art.
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Table 1. Comparison of ResGCN-28 with state-of-the-art.
We outperform other SOTA in 9 out of 13 classes
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Table 2. Comparison of ResGCN-28 with DGCNN* (Our shallow baseline model)
* We reproduced the results of DGCNN on all classes since the results across all classes were not provided in the DGCNN paper.
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Table 2. Comparison of ResGCN-28 with DGCNN* (Our shallow baseline model)
* We reproduced the results of DGCNN on all classes since the results across all classes were not provided in the DGCNN paper.
Consistent improvements
across all the classes.
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Table 2. Comparison of ResGCN-28 with DGCNN* (Our shallow baseline model)
* We reproduced the results of DGCNN on all classes since the results across all classes were not provided in the DGCNN paper.
Consistent improvements
across all the classes.
~ 4% boost in mIOU.
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
PlainGCN VS. ResGCN
DeepGCNs.org
Deeper
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Ablation Study
skip connections, dilation, depth, width, # of NNs
DeepGCNs.org
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Ablation Study
DeepGCNs.org
Table 3. Ablation study on area 5 of S3DIS.
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Table 3. Ablation study on area 5 of S3DIS.
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Qualitative Results
Visualizations on S3DIS
DeepGCNs.org
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Reduce Kernel Size
Reduce Network Depth
Reduce Network Width
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Wider
Deeper
No Dilation
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
More Results
GCN variants
DeepGCNs.org
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Table 3. Comparisons of Deep GCNs variants on area 5 of S3DIS.
ResEdgeConv
ResGIN
ResMRGCN
ResGraphSAGE
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
More Results
DeepGCNs.org
Table 4. Node classification of biological networks
Wider
Deeper
By John Morris.
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Conclusion and Future Work
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Conclusion and Future Work
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
https://www.deepgcns.org
TensorFlow Repo
Pytorch Repo
500+ Stars
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Follow-up works
DeepGCNs.org
Sub-Graph Detection for Temporal Action Detection. Mengmeng xu. et al.
GCN for 3D Vehicle Detection on LiDAR. Jesue Zarzar. et al.
GraphSR: Towards Super-Resolution Modules for Graphs. Guocheng Qian
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Our team
DeepGCNs.org
Guohao Li
Matthias Müller
Ali Thabet
Bernard Ghanem
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Our team
DeepGCNs.org
Guohao Li
Matthias Müller
Ali Thabet
Bernard Ghanem
Guocheng Qian
Itzel C. Delgadillo
Abdulellah Abualshour
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
Thank You
Poster ID: 12
Project website: https://www.deepgcns.org
Preprint Paper: https://arxiv.org/abs/1904.03751
DeepGCNs.org
VCC
VISUAL
COMPUTING
CENTER
IVUL
DeepGCNs.org
DeepGCNs: Can GCNs go as deep as CNNs?
Guohao Li*, Matthias Müller*, Ali Thabet, Bernard Ghanem
* equal contribution
Poster ID: 12