1 of 48

The ITER Project -

Fusion Research towards a Burning Plasma

SULI 2020 class, Princeton, NJ

F. M. Laggner

June 18, 2020

ITER site, Feb 2019

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

2 of 48

http://www.iter.org

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

3 of 48

About me: Where do I come from? Austria (≠ Australia😉)

3

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

4 of 48

About me: A picture is worth a thousand words…

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

5 of 48

My path: From Europe to the U.S.

5

San Diego 🇺🇸

👨‍🔬

Princeton 🇺🇸

👨‍💻

Vienna 🇦🇹

👨‍🎓

Munich 🇩🇪

🎓

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

6 of 48

Today’s topic: The ITER project

6

Saint-Paul-lès-Durance 🇫🇷

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

7 of 48

Takeaway: Building a fusion reactor …

7

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

8 of 48

… is a complex puzzle.

8

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

9 of 48

… is a complex puzzle. BUT ‘we’ are getting there!

9

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

10 of 48

Why? Fusion efficiency trumps fossil fuel

11 million times more energy per gram material!

10

1 railway car of coal (28 tonnes)

1 tablespoon

liquid Deuterium-Tritium (2.5 grams)

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

11 of 48

Why? Fusion’s Advantages

  • Massive, continuous, baseload energy
  • Safe, no meltdown possible
  • No CO2 or other greenhouse gases
  • No long-lived high-activity radioactive waste
  • Unlimited fuel from water and Lithium for millions of years

11

DIII-D

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

12 of 48

Why? Fusion’s Advantages

  • Massive, continuous, baseload energy
  • Safe, no meltdown possible
  • No CO2 or other greenhouse gases
  • No long-lived high-activity radioactive waste
  • Unlimited fuel from water and Lithium for millions of years

12

Fusion-like plasma in DIII-D

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

13 of 48

Global challenge, global response

13

  • June 2005: Members agree to build ITER in France

  • November 2006: ITER Agreement signed in Paris

China EU India Japan Korea Russia USA

More than 50% of world population, 85% of global GDP

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

14 of 48

An integrated project -

Intellectual Property shared by all

Project Structure

  • 1 Central Team - ITER organization (IO)
  • 7 Domestic Agencies

Financial support:

  • 80-90% in-kind
    • Lots of Hardware!
  • 10-20% in-cash

14

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

15 of 48

A unique cost share...

15

Machine Core

Internal Auxiliary

External Auxiliary

Heating, Diagnostics, Control

Buildings

EU

CN

IN

JA

KO

RF

US

IO

0

100

200

300

400

CN

IN

EU

Europe, as host, pays ~45%.

All others pay ~9%.

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

16 of 48

ITER’s Mission - Demonstrate fusion at industrial-scale

  • Produce a plasma with dominant heating of alpha particles
    • Study a “burning plasma”
  • 500 MW fusion power (Q≥10)
  • Extend pulse duration
    • Non-inductive current drive
  • Test Fuel technology
    • Tritium breeding
  • Costs: $ 20 billion

16

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

17 of 48

A giant magnetic cage

  • 1 central solenoid (Nb3Sn)
    • 13 m high, 1,000 tonnes
  • 18 toroidal magnets (Nb3Sn)
    • 17 m high, 360 tonnes each
    • Magnetic axis to be positioned with a precision below 0.5 mm
  • 6 poloidal magnets (Nb-Ti)
    • 8 to 24 m diametre, 200 to 400 tonnes each

17

“Tokamak”: Russian acronym for “Toroidal Chamber, Magnetic Coils”

Day 4

Batta-

glia

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

18 of 48

The ITER Tokamak - Massive Components

Vacuum Vessel: ~ 8 000 t

TF Coils: ~ 18 x 360 t

Central solenoid: ~ 1 000 t

Radius: 6.2 m

Total ~ 23 000 tonnes

18

3.5 Eiffel Towers

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

19 of 48

Reminder: Performance of Fusion Plasmas

  • Temperature - Ti: 1-2 × 108 K (10-20 keV)
    • ~10 × temperature of sun’s core
  • Density - ni: 1 × 1020 m-3
    • 10-6 of atmospheric particle density
  • Energy confinement time - 𝞃E: few seconds
    • plasma current × radius2
  • Plasma pulse duration: ~1000 s

19

Fusion power amplification:

⇒ Present devices: Q ≤ 1

⇒ ITER: Q ≥ 10

⇒ ’Controlled ignition’:

Q ≥ 30

Day 1

Cowley

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

20 of 48

Why bigger? How big should ITER be?

Confinement scaling studies provide robust approach

20

Detailed design rely on numerical codes combining engineering and physics constraints

1 m3�0.05 MJ

13 m3�1 MJ

80 m3�10 MJ

815 m3�350 MJ

Major Radius

τth ∝ IpR2P-2/3

Plasma Current

Input Power

Day 7

Gutten-

felder

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

21 of 48

ITER Baseline Plasma Scenarios for Fusion Power Operation (Deuterium-Tritium D-T)

A range of non-active (H, He) and D plasma scenarios must be supported for commissioning purposes to support rapid transition to DT operation

21

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

22 of 48

Simulation of a ITER plasma Discharge -

Control will be Key to Achieve Mission

  • Central Solenoid (CS) induces the plasma current (Ip)
  • Poloidal field (PF) coils control the vertical stability
  • Both coil sets are used control the plasma boundary

22

T. Casper, et al NF 2014

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

23 of 48

Heating and Current Drive Systems

23

IC

Ion Cyclotron

40-55MHz

20MW*

+20MW#

Sawtooth control modulation

< 1 kHz

LH

Lower Hybrid

~5 GHz

0MW*

+40MW#

Off-axis bulk current drive

EC

Electron Cyclotron

170GHz

20MW*

+20MW#

NTM/sawtooth control modulation up to 5 kHz

*Baseline Power #Possible Upgrade

NB

Neutral Beam

- 1 MeV

33MW*

+16.5MW#

Bulk current drive limited modulation

Day 5

Pinsker

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

24 of 48

All-Metal Plasma Facing Components

24

Be

W

  • Beryllium (Be) first wall (~700m2):
    • low-Z limits plasma impurity contamination
    • low neutron activation
    • low melting point – plasma transients!
    • erosion/ redeposition ⇒ fuel retention
    • dust production
  • Tungsten (W) divertor (~150m2):
    • resistant to sputtering
    • limits fuel retention (Be dominates)
    • W concentration in core must be below ~ 2.5 × 10-5
    • melting during plasma transients

Day 6

Dono- van

Lasa

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

25 of 48

Remote Handling - Challenging to repair & replace complex & heavy components in a nuclear environment

Dedicated, state-of-the art systems for both Blanket and Divertor

25

Divertor RH procured by EU

Blanket RH procured by JA

CMM

CTM

Divertor Cassette Prototype

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

26 of 48

Test Blanket Modules - Tritium fuel cycle is major challenge for all D-T fusion devices

26

ITER will test concepts: 6 modules with different designs

n + 6Li → T + 4He + 4.8 MeV

n + 7Li → T + 4He + n - 2.5 MeV

Day 6

Kessel

Day 7

Xiao

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

27 of 48

Analyzing the Plasma - ITER Diagnostics

27

UPPER PORT

(12 used)

EQUATORIAL PORT

(6 used)

DIVERTOR PORT

(6 used)

DIVERTOR CASSETTES

(16 used)

VESSEL WALL

(Distributed Systems)

  • About 40 large scale diagnostic systems are foreseen:
    • Diagnostics required for protection, control and physics studies
    • Measurements from DC to γ-rays, neutrons, α-particles, plasma species
    • Diagnostic Neutral Beam for active spectroscopy (CXRS, MSE ….)

Day 5

Reinke

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

28 of 48

Always take a look back - before looking ahead...

28

Jan 2009

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

29 of 48

Significant onsite progress - ITER is HAPPENING

Optimism for the next 10 years

29

Mar 2020

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

30 of 48

30

Tokamak Complex

ITER Headquarters

400 kV Switchyard

Magnet Power Conversions Bdgs.

PF Coil Winding Facility

Bioshield

Heat Rejection System

February 28, 2020

Cryostat Workshop

Cryoplant

Assembly Hall

Contractors area

Worksite progress

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

31 of 48

Construction Strategy and Staging (Baseline 2016)

31

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

32 of 48

Challenge: Naval construction sized components with watch-like precision

32

ITER Assembly Hall, giant tools will handle components up to ~1500 tonnes

Insertion of a 300-tonne toroidal field magnet into its case with tolerances of 0.2 millimeters

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

33 of 48

Buildings and manufacturing onsite -

Plant Systems

33

Heat removal system

Power Supply (switchyard and magnet power conversion)

Usine cryogénique

Cryogenic Plant

Inside the Magnet Power Conversion buildings

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

34 of 48

Buildings and manufacturing onsite -

Poloidal Field Coils

34

Poloidal Field Coil #5 nearing completion, April 2020

PF Coil #2 in fabrication, April 2020

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

35 of 48

Buildings and manufacturing onsite - �First two Toroidal Field magnets arrived

35

TF Coil #09, arrived from Italy,

April 17, 2020

TF Coil #12, arrived from Japan

April 25, 2020

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

36 of 48

Buildings and manufacturing onsite -

Cryostat installation begins

36

Cryostat Base moving into Assembly Hall, April 2020

Tokamak pit lid removal, April 2020

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

37 of 48

Buildings and manufacturing onsite -

Recent milestone: Cryostat base plate installed (May-30)

37

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

38 of 48

The ITER Project in the U.S.

  • Highly Leveraged:
    • U.S. pays 9%
    • U.S. gets 100% access to the science & technology

  • Most U.S. ITER funding goes to U.S. companies:
    • >$1 billion since 2007

38

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

39 of 48

US ITER hardware scope

39

Electron Cyclotron Heating Transmission Lines

Ion Cyclotron Heating Transmission Lines

Toroidal Field Coil Conductor

(US Share 8%)

COMPLETE

Pellet Injection

Tokamak Exhaust Processing System

Diagnostics

(US Share 14%)

Steady State Electrical Network

(US Share 75%)

COMPLETE

Central Solenoid

Tokamak Cooling Water System

Vacuum System

Roughing Pumps

Key: FinishedHardware in fabrication Prototypes in fabrication • In design

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

40 of 48

US ITER manufacturing examples

40

5 of 7 CS modules are in fabrication

Roots pump testing

36 km of nuclear piping

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

41 of 48

US ITER Diagnostic Example - Low Field Side Reflectometer will measure the Electron Density

  • Reflectometer is basically a radar system
  • Launches frequency-modulated (FM) microwaves and measures the reflected signal from the plasma

41

Low field side reflectometer test stand with antennae (left) and waveguides (right)

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

42 of 48

The ITER research plan -

A Staged Approach to D-T Fusion

  • Series of Assembly and Operation phases between First Plasma and start of DT Full Fusion operation.

42

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

43 of 48

Towards a fusion power plant...

43

Magnet coils

Breeding blanket & fuel cycle

Structural Materials

Heating & current drive systems

First wall

Plasma

Day 5

Sorbom

Day 6

Kessel

Day 7

Humrick-house

Garrison

Xiao

Turbine & Generator

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

44 of 48

Towards a fusion power plant...

44

Magnet coils

Breeding blanket & fuel cycle

Structural Materials

Heating & current drive systems

First wall

Plasma

Turbine & Generator

ITER contributions

Partially addressed by ITER

Day 5

Sorbom

Day 6

Kessel

Day 7

Humrick-house

Garrison

Xiao

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

45 of 48

ITER International school

(2020 Marseille)

  • Since 2007
  • On selected topics of ITER research
    • 2020 on ‘Energetic Particles’
  • Targets graduate students and postdocs
  • Support Scholarships through USBPO

45

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

46 of 48

Stay up to date -

Join Media Channels

46

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

47 of 48

47

http://www.iter.org

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020

48 of 48

Who manufactures what?

48

F. M. Laggner / SULI 2020 - ITER, Princeton, NJ / June 18, 2020