

SpiNNaker Hardware & Software

Overview

SpiNNaker Workshop September 2018

Established by the European Commission

Contents

- What is SpiNNaker?
- SpiNNaker at different scales
- SpiNNaker architecture: chip & system
- Using SpiNNaker

SpiNNaker Project

A million mobile phone processors in one computer Able to model about 1% of the human brain...

...or 10 mice!

How is SpiNNaker Used?

- Some key user communities:
 - Computational neuroscientists to simulate large neural models and try to understand the brain
 - Roboticists to build advanced neural sensory and control systems
 - Computer architects to apply neural theories of computation to non-neural problems

SpiNNaker System

Chip-to-chip communications: Packet routing

- No memory shared between chips!
- Communicate via simple messages called packets:
 - 40 bit (no data) or
 - 72 bit (includes 32-bit data word)
- Four types of routing, most important (for you) is multicast
- Packets used to communicate with the host and external peripherals:
 - Via Ethernet adapter for host comms.
 - Or via chip-to-chip SpiNNaker links for external devices

Routing Types

Nearest Neighbour

Point-to-Point

Multicast

Fixed Route

Multicast Routing

- Hardware router on each node
- Packets have a routing key
- Router has a look-up table of {key, mask, data} triplets
- If address matches a
 key-mask pair, the
 associated data tells router
 what to do with the packet

SpiNNaker Chip

Multi-chip packaging by UNISEM Europe

SpiNNaker Boards

SpiNNaker Machines

Scaling to a billion neurons

What Next for SpiNNaker?

- Five cabinet machine (500K ARM cores)
 - Now online and available!
 - Open to any research project, in principle
- SpiNNaker2 being developed within HBP
 - New systems by 2020?
- For further information contact:

simon.davidson@manchester.ac.uk

Chip Architecture

SpiNNaker Node

Chip Resources

- 18 cores on a chip:
 - 1 Monitor Processor
 - 16 Application processors
 - 1 fault-tolerant/yield spare
- Each core is an ARM968 processor
 - o 200 MHz clock speed
 - No memory management or floating point!
 - o Local memories:
 - 32K local code memory (ITCM), 64K local data (DTCM)
 - TCMs are visible only to local processor
- 128MByte SDRAM
 - Shared and visible to all processors on same node
- Router:
 - Directs flow of information from core-to-core across the machine

Using SpiNNaker:

The Software Stack

Software Stack

Mapping Process

What Files are Required for Simulation?

Files Required

For Each Core (16 per chip):

- Application C executable (32KB)
- Application local data (64KB)
- Application shared data (8MB)

For Each Chip:

- Router table
- Any shared data tables

Order of Events (batch mode)

- 1. Compile network description
- 2. Map graph to machine
- 3. Generate data files
- 4. Load files
- 5. Synchronise the start on all cores!
- 6. Simulation runs to completion
- 7. Hands back control to host
- 8. Read back results and post-process

End of Overview!

- Much more detail on all of these topics
 - In the sessions to come....
- Any questions for now?
- Just one more thing to add....

Buying SpiNNaker Hardware

- 48-node board now available for sale
- Non-commercial use only
- 4-node boards can only be loaned

For further information contact:

simon.davidson@manchester.ac.uk