
Asymptotic Notation
Complexity Analysis

Week-02, Lesson 2

ALGORITHM DEFINITION

A finite set of statements that guarantees an optimal
solution in finite interval of time

CSE@DIU 2

GOOD ALGORITHMS?

Run in less time

Consume less memory

But computational resources (time complexity) is usually
more important

CSE@DIU 3

MEASURING EFFICIENCY

The efficiency of an algorithm is a measure of the amount of
resources consumed in solving a problem of size n.
The resource we are most interested in is time
We can use the same techniques to analyze the consumption of other

resources, such as memory space.

It would seem that the most obvious way to measure the
efficiency of an algorithm is to run it and measure how much
processor time is needed

Is it correct ?

CSE@DIU 4

FACTORS

Hardware

Operating System

Compiler

Size of input

Nature of Input

Algorithm

Which should be improved?
CSE@DIU 5

RUNNING TIME OF AN ALGORITHM

Depends upon
 Input Size
 Nature of Input

Generally time grows with size of input, so running time of an
algorithm is usually measured as function of input size.

Running time is measured in terms of number of
steps/primitive operations performed

Independent from machine, OS

CSE@DIU 6

FINDING RUNNING TIME OF AN
ALGORITHM / ANALYZING AN

ALGORITHM

Running time is measured by number of steps/primitive
operations performed

Steps means elementary operation like
,+, *,<, =, A[i] etc

 We will measure number of steps taken in term of size of
input

CSE@DIU 7

SIMPLE EXAMPLE (1)

// Input: int A[N], array of N integers
// Output: Sum of all numbers in array A

int Sum(int A[], int N)
{
 int s=0;
 for (int i=0; i< N; i++)
 s = s + A[i];
 return s;
}

How should we analyse this?

CSE@DIU 8

SIMPLE EXAMPLE (2)

9

// Input: int A[N], array of N integers
// Output: Sum of all numbers in array A

int Sum(int A[], int N){
 int s=0;

 for (int i=0; i< N; i++)

 s = s + A[i];

 return s;
}

1

2 3 4
5 6 7

8 1,2,8: Once
3,4,5,6,7: Once per each iteration
 of for loop, N iteration
Total: 5N + 3
The complexity function of the
algorithm is : f(N) = 5N +3

CSE@DIU 9

SIMPLE EXAMPLE (3) GROWTH

OF 5N+3
Estimated running time for different values of N:

N = 10
N = 100
N = 1,000
N = 1,000,000

=> 53 steps
=> 503 steps
=> 5003 steps
=> 5,000,003 steps

As N grows, the number of steps grow in linear proportion to N for
this function “Sum”

CSE@DIU 10

WHAT DOMINATES IN PREVIOUS

EXAMPLE?

What about the +3 and 5 in 5N+3?
As N gets large, the +3 becomes insignificant
5 is inaccurate, as different operations require varying amounts of time and

also does not have any significant importance

What is fundamental is that the time is linear in N.

Asymptotic Complexity: As N gets large, concentrate on the
 highest order term:

 Drop lower order terms/ constant such as +3
 Drop the constant coefficient of the highest order term i.e. N

CSE@DIU 11

ASYMPTOTIC COMPLEXITY

The 5N+3 time bound is said to "grow asymptotically"
like N

 This gives us an approximation of the complexity of the
algorithm

 Ignores lots of (machine dependent) details, concentrate
on the bigger picture

CSE@DIU 12

COMPARING FUNCTIONS:
ASYMPTOTIC NOTATION

Big Oh Notation: Upper bound

Omega Notation: Lower bound

Theta Notation: Tighter bound

CSE@DIU 13

BIG OH NOTATION [1]

If f(N) and g(N) are two complexity functions, we say

 f(N) = O(g(N))

(read "f(N) is order g(N)", or "f(N) is big-O of g(N)")
if there are constants c and N such that for N > N ,

 f(N) ≤ c * g(N)
for all sufficiently large N.

CSE@DIU 14

BIG OH NOTATION [2]

CSE@DIU 15

O(F(N))

16

CSE@DIU 16

EXAMPLE (2): COMPARING

FUNCTIONS

 Which function is better?

 10 n Vs n2 3

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10 n^2
 n^3

17CSE@DIU 17

COMPARING FUNCTIONS

As inputs get larger, any algorithm of a smaller order
will be more efficient than an algorithm of a larger order

Ti
m

e
(s

te
ps

)

Input (size)

3N = O(N)

0.05 N = O(N)2 2

N = 60

CSE@DIU 18

BIG-OH NOTATION

Even though it is correct to say “7n - 3 is O(n)”, a better
statement is “7n - 3 is O(n)”, that is, one should make the
approximation as tight as possible

3

Simple Rule:
Drop lower order terms and constant factors

7n-3 is O(n)
8n log n + 5n + n is O(n log n)2 2

CSE@DIU 19

2

BIG OMEGA NOTATION

If we wanted to say “running time is at least…” we use Ω

Big Omega notation, Ω, is used to express the lower bounds on a
function.

If f(n) and g(n) are two complexity functions then we can say:

f(n) is Ω(g(n)) if there exist positive numbers c and n such that 0<=f(n)>=cΩ (n) for all n>=n0 0

CSE@DIU 20

BIG THETA NOTATION

 If we wish to express tight bounds we use the theta notation, Θ

 f(n) = Θ(g(n)) means that f(n) = O(g(n)) and f(n) = Ω(g(n))

21

CSE@DIU 21

WHAT DOES THIS ALL MEAN?

If f(n) = Θ(g(n)) we say that f(n) and g(n) grow at the same
rate, asymptotically

If f(n) = O(g(n)) and f(n) ≠ Ω(g(n)), then we say that f(n) is
asymptotically slower growing than g(n).

If f(n) = Ω(g(n)) and f(n) ≠ O(g(n)), then we say that f(n) is
asymptotically faster growing than g(n).

CSE@DIU 22

WHICH NOTATION DO WE USE?

To express the efficiency of our algorithms which of the
three notations should we use?

As computer scientist we generally like to express our
algorithms as big O since we would like to know the
upper bounds of our algorithms.

Why?

If we know the worse case then we can aim to improve it
and/or avoid it.

CSE@DIU 23

PERFORMANCE CLASSIFICATION
f(n) Classification

1 Constant: run time is fixed, and does not depend upon n. Most instructions are executed once, or
only a few times, regardless of the amount of information being processed

log n Logarithmic: when n increases, so does run time, but much slower. Common in programs which
solve large problems by transforming them into smaller problems.

n Linear: run time varies directly with n.
Typically,

a small amount of processing is done on each
element.

n log n When n doubles, run time slightly more than doubles. Common in programs which break a problem
down into smaller sub-problems, solves them independently, then combines solutions

n2 Quadratic: when n doubles, runtime increases fourfold. Practical only for small problems; typically
the program processes all pairs of input (e.g. in a double nested loop).

n3 Cubic: when n doubles, runtime increases eightfold

2n Exponential
solution.

: when n doubles, run time squares. This is often the result of a natural, “brute force”

24CSE@DIU 24

SIZE DOES MATTER[1]

25

What happens if we double the input size N?

 N log N2 5N N log N2 N2 2N

 8 3 40 24 64 256
 64 256 65536 16 4 80

 32 5 160 160 1024 ~10 9

 64 6 320 384 4096 ~10
128 7 640 896 16384 ~10

19

38

256 8 1280 2048 65536 ~10 76

CSE@DIU 25

COMPLEXITY CLASSES

i T
 

t
(e

 m
 

) s
 p

 e
 s

 

26

CSE@DIU 26

SIZE DOES MATTER[2]

Suppose a program has run time O(n!) and the run time for
n = 10 is 1 second

For n = 12, the run time is 2 minutes

For n = 14, the run time is 6 hours

For n = 16, the run time is 2 months

For n = 18, the run time is 50 years

For n = 20, the run time is 200 centuries

CSE@DIU 27

Textbooks & Web References

• Text Book (Chapter 3)
• Reference book ii (Chapter 2)

CSE@DIU 28

Thank you

CSE@DIU 29

