

FUNÇÕES QUÍMICAS

ÁCIDOS

Uma substância, em solução aquosa, que sofre ionização em solução aquosa produzindo $\rm H_3O^+$ como cátion.

Obs.: Ionização é a formação de íons quando compostos moleculares sofrem a quebra da ligação química formando íons em solução (solução eletrolítica), mas quando puros estas moléculas não são eletrolíticas (não possuem íons livres).

Ex.: HCl, H₂SO₄, H₃PO₄ e etc.

CLASSIFICAÇÃO DOS ÁCIDOS

Quanto à presença de oxigênio:

Hidrácidos: Não possuem oxigênio em sua fórmula molecular

Ex.: HCl, HCN, H₂S, HF e etc.

Oxiácidos: Possuem oxigênio em sua fórmula molecular.

Ex.: H₂SO, HNO₃, H₃PO₄, H₃AsO₃ e etc.

Quanto ao número de átomos de hidrogênio ionizáveis:

a) Monoácidos ou monopróticos: um átomo de hidrogênio ionizável.

Exemplos: HCN, HF e etc.

b) Diácidos ou dipróticos: dois átomos de hidrogênio ionizáveis.

Exemplos: H₂CO₃, H₂Se e etc.

c) Triácidos ou tripróticos: três átomos de hidrogênio ionizáveis.

Exemplos: H₃BO₃, H₃AsO₄ e etc.

d) Tetrácidos ou tetrapróticos: quatro átomos de hidrogênio ionizáveis.

Exemplos: $H_4P_2O_7$, H_4SiO_4 e etc.

Quanto à força do ácido:

Regra geral:

Hidrácidos:

Fortes: HCl, HBr e HI.

Moderado: HF

Fracos: os demais.

Oxiácidos:

Calcula-se o número oxigênios existentes na fórmula molecular menos o número de H⁺ ionizáveis.

DIFERNÇA	FORÇA Muito forte	
3		
2	Forte	
1	Moderado	
0	Fraco	

Exemplos:

$$H_2SO_4 =$$

$$HNO_2 =$$

$$H_3BO_3 =$$

NOMENCLATURA

Hidrácidos:

Ácido + nome do elemento + ídrico

Ex.:

HBr –

HI –

HCl –

HF-

Oxiácidos:

Ácido + prefixo + nome do elemento + sufixo

Calcula-se o nox do elemento para determinar seu prefixo e sufixo.

NOX	PREFIXO	SUFIXO
+1 ou +2	hipo	OSO
+3 ou +4		OSO
+5 ou +6	-	ico
+7	per	ico

NOX: Número de oxidação

Regra básica para determinar o nome dos ácidos.

Nox do hidrogênio = +1

Nox do oxigênio = -2

Ex.:

HCIO - (nox=+1)
$$\Rightarrow$$

HCIO₄ - (nox=+7) \Rightarrow
H₃PO₄ - (nox=+5) \Rightarrow
H₂SO₃ - (nox=+4) \Rightarrow

$$HNO_3 =$$

$$HCIO_3 =$$

Exercícios

- 1) Todas as substâncias azedas estimulam a secreção salivar, mesmo sem serem ingeridas. Esse é o principal motivo de se utilizar vinagre ou limão na preparação de saladas, pois o aumento da secreção salivar facilita a ingestão. No vinagre e no limão aparecem substâncias pertencentes à função:
- a) base ou hidróxido.
- b) sal.
- c) óxido.
- d) aldeído.
- e) ácido.

- 2) Qual das substâncias a seguir apresenta sabor azedo quando em solução aquosa?
- a) Na₂S.
- b) NaCl.
- c) CaO.
- d) HC/.
- e) NaOH.

3) Identifique a alternativa que apresenta somente diácidos:

- a) H₂S, H₂SO₄, H₃PO₄, H₃BO₃.
- b) HCN, H₂S, H₃PO₄, H₃BO₃.
- c) H₂S, H₂SO₄, H₂CO₃, H₂Te.
- d) HC*I*, H₂S, H₂SO₄, H₃BO₃.
- e) H₂SO₄, H₂SO₃, HNO₃, H₃PO₄.

- 4) Alguns moluscos, para defender-se dos predadores, liberam um diácido, cuja fórmula é:
- a) NaOH.
- b) K₂O.
- c) Li₂CO₃.
- d) H₂SO₄.
- e) H₃PO₄.

- 5) Os ácidos HClO₄, H₂MnO₄, H₃PO₃, H₄Sb₂O₇, quanto ao número de hidrogênios ionizáveis, podem ser classificados em:
- a) monoácido, diácido, triácido, tetrácido.
- b) monoácido, diácido, triácido, triácido.
- c) monoácido, diácido, diácido, tetrácido.
- d) monoácido, monoácido, diácido, triácido.
- e) monoácido, monoácido, triácido, tetrácido.

- 6) O ácido que corresponde à classificação monoácido, oxiácido e forte é:
- a) HNO₃.
- b) HC/.
- c) H₂SO₄.
- d) HCN.
- e) H₃PO₄.

7) Entre os oxiácidos H_2SO_3 , H_3BO_3 , $HCIO_3$ e $HMnO_4$, a ordem crescente de força ácida para esses compostos é:

- a) H₂SO₃, HClO₃, H₃BO₃, HMnO₄.
- b) HC/O₃, HMnO₄, H₂SO₃, H₃BO₃.
- c) H₃BO₃, HC/O₃, H₂SO₃, HMnO₄.
- d) H₃BO₃, H₂SO₃, HC/O₃, HMnO₄.
- e) HMnO₄, HClO₃, H₃BO₃, H₂SO₃.