
Managed Components

Redefining third-party tools on the web,
and beyond.

Today’s issues with
third-parties

👎 Performance

👎 Security

👎 Privacy

<script
 src="//example.com/random/script.js">
</script>

Zaraz, take 1 Do things
that don’t
scale…

Zaraz, take 2 Do things
that don’t
scale… until
they have to.

An open format for defining third-party tool behaviors on a website or an application.
Managed Components can execute code outside and inside the user agent, can present
interfaces in a parent application, can establish network connections and can provide
custom APIs. Managed Components requires a runtime environment to work.

Managed Component
[ˈmænɪdʒd kəmˈpəʊnənt] noun

Benefits of a
Managed
Component

👍 Events system

👍 Same domain

👍 Server logic

👍 SSR embeds

👍 Client events

👍 Pre-page-rendering actions

👍 Consent support

Component Manager

Implement the API

● Dispatch events
● Provide server-side capabilities
● Manage caching and storage
● Execute “server-side” code

Component Manager

Enforce user-configuration

● What module to load?
● When to load it?
● Which events should be passed to it?
● What permissions to grant a tool?

Component Manager

Potential implementations

● Proxy server
● HTTP server
● App SDK - Mobile / Desktop
● Service Worker

…?

Open format,
Open runtimes

● Specs defined by a committee
○ Tool vendors
○ Browsers
○ Infrastructure
○ Users

● Open source reference implementation
○ WebCM - github.com/cloudflare/webcm

● Open source the Zaraz library
○ Already > 30 releases components

The future of third-parties

● Analytics tools that don’t run in the browser
● Embed that are pre-rendered and cached
● Session recording tools that are light
● Complex widgets without security concerns
● Seamless Web <-> Mobile migration (& Desktop?)
● Controlled and audited execution environment
● Standard way to deploy fast and safe third-party tools

