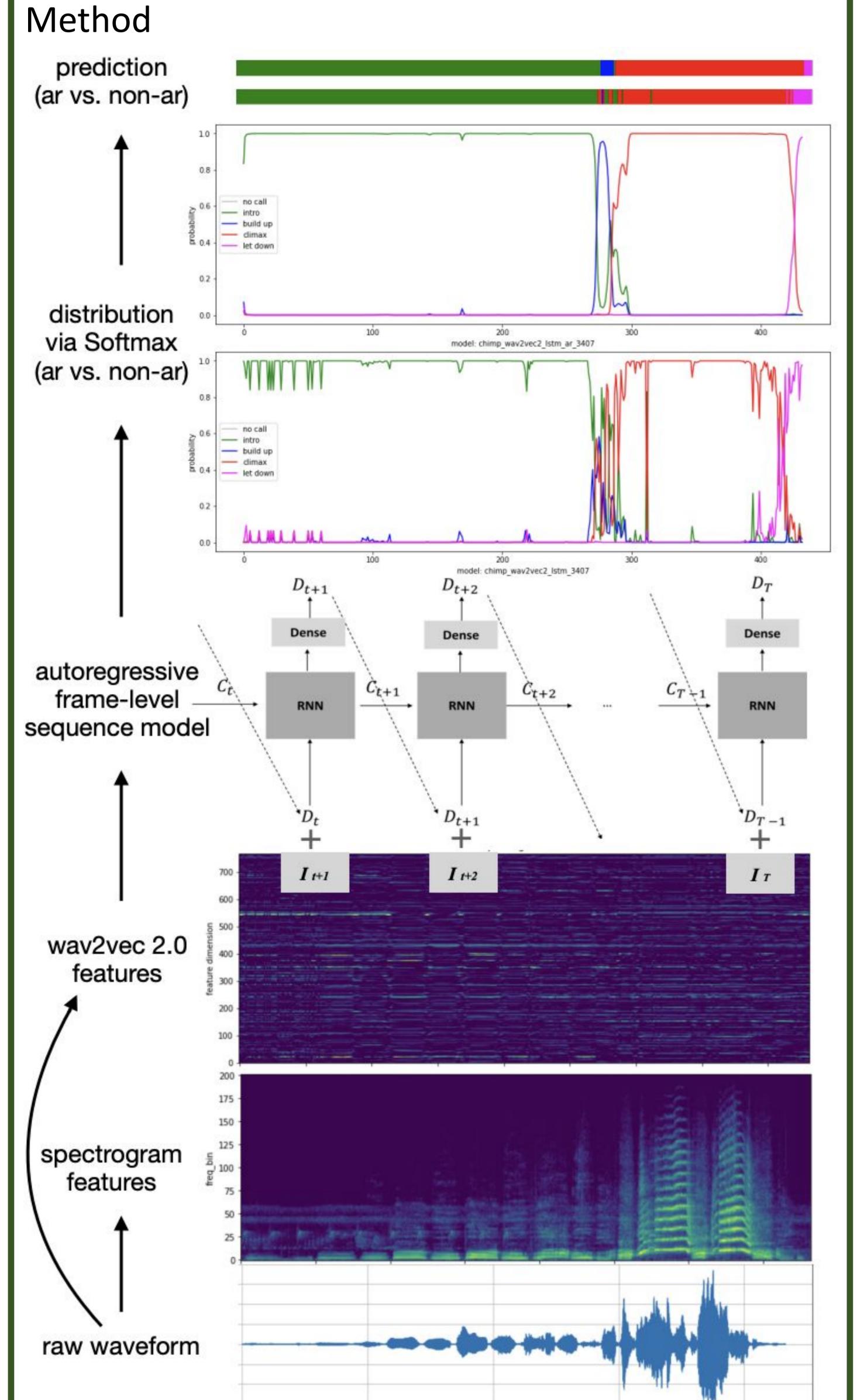
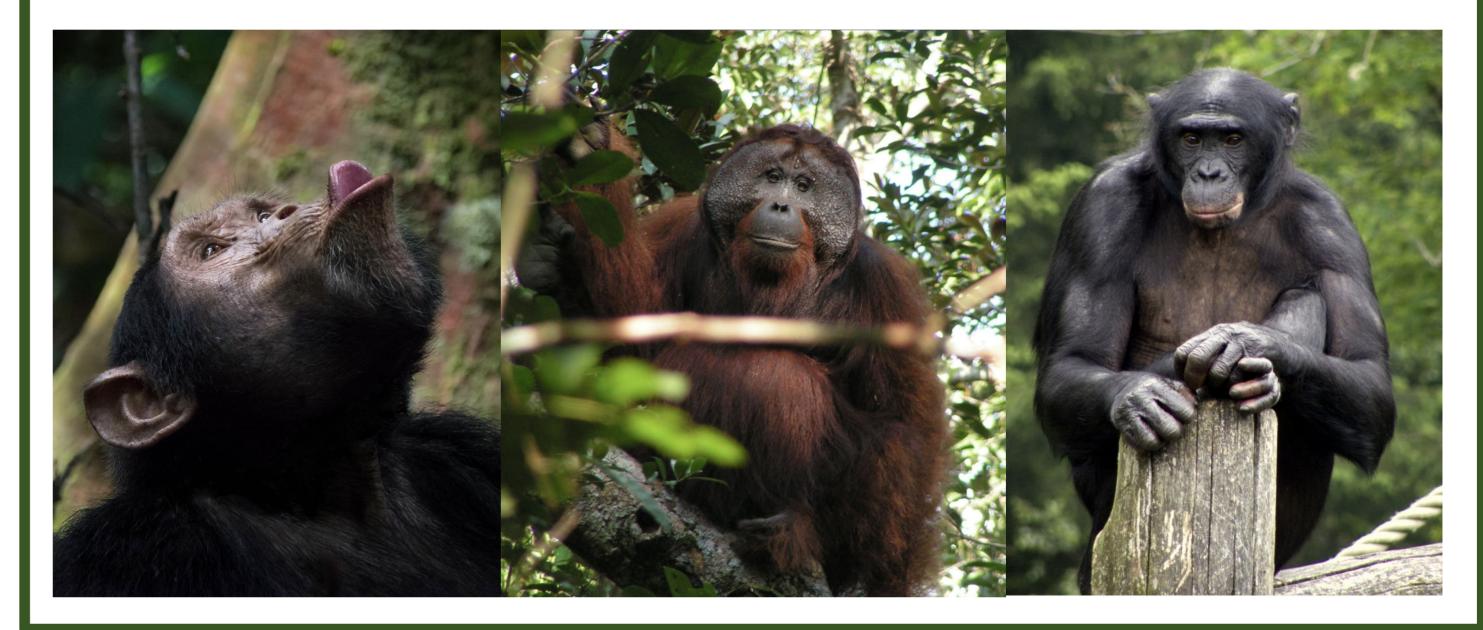
Automatic Sound Event Detection and Classification of Great Ape Calls Using Neural Networks


Zifan Jiang^{1,2}, Adrian Soldati^{1,3}, Isaac Schamberg², Adriano R. Lameira⁴, Steven Moran^{1,5} ¹ University of Neuchâtel, ² University of Zurich, ³ University of St Andrews, ⁴ University of Warwick, ⁵ University of Miami Contact Email: <u>j22melody@gmail.com</u>

TL;DR


NEUCHÂTEL

- Human annotation is expensive automatically detect and classify great ape calls from continuous audio recordings.
- Three data sets of different great ape lineages collected during field research: chimpanzees, orangutans, and bonobos.
- Wav2vec 2.0, pretrained on 1000 hours human speech, transfers surprisingly well as an acoustic feature extractor used with LSTM.

data set	# audio clips	mean / call / total duration
chimpanzee	235	~ 8s / 1,955s / 1,964s
orangutan	65	~ 74s / 2,793s / 4,817s
bonobo	28	~ 24s / 62s / 677s

Results

ID	data	feature	model	test acc.	test f1
Explo	re the best j	feature and mod	lel combination		
E1	chimp	waveform	lstm (baseline)	51.0 ± 3.6	34.7 ± 4.3
E1.1	chimp	spectrogram	lstm	58.7 ± 4.7	53.9 ± 5.4
E2	chimp	wav2vec2	lstm	79.3 ± 2.3	77.9 ± 3.6
E2.1	chimp	wav2vec2	transformer	75.3 ± 0.6	72.1 ± 0.5
Explo	re the hype	r-parameters			
E3.1	chimp	wav2vec2	$lstm (E2 + batch_size = 4)$	67.7 ± 4.0	69.6 ± 4.0
E3.2	chimp	wav2vec2	$lstm (E2 + batch_size = 8)$	62.0 ± 4.4	61.5 ± 4.0
E3.3	chimp	wav2vec2	lstm (E2 + dropout = 0.2)	78.0 ± 1.7	76.8 ± 2.7
E3.4	chimp	wav2vec2	lstm (E2 + dropout = 0.1)	78.7 ± 2.9	77.3 ± 3.9
E3.5	chimp	wav2vec2	lstm (E2 - balance_weights)	79.3 ± 2.3	78.3 ± 3.6
Explo	re autoregr	essive modeling			
E4	chimp	wav2vec2	lstm (E2 + autoregressive)	85.7 ± 2.1	85.6 ± 2.5
Extend	d to orangu	tan long calls a	nd a binary setting		
E5	orang	wav2vec2	lstm (= E4)	81.7 ± 3.1	82.0 ± 2.6
E5.1	orang	wav2vec2	lstm (E5 + binary target)	92.0 ± 1.0	91.9 ± 1.1
Extend	d to bonobe	o calls and a bin	ary setting		
E6	bonobo	wav2vec2	lstm (= E4)	83.7 ± 3.8	82.3 ± 2.2
E6.1	bonobo	wav2vec2	lstm (E6 + binary target)	87.7 ± 3.5	87.8 ± 2.9
Zero-s	hot transfe	rring from oran	gutan to bonobo		
E7	bonobo	wav2vec2	lstm (= E5.1)	72.0 ± 4.0	74.2 ± 3.1

report the mean and standard deviation. acc. stands for frame-level accuracy, f1

stands for the frame-level average F1- score weighted by the number of true instances per class. For hyper-parameters, we start E1 with batch_size = 1, dropout = 0.4 and keep them by default, if not otherwise specified in the table.

Discussion

- Wav2vec 2.0 transfers from human speech (high resource) to great ape calls (low resource) what about other animals?
- Do the same observations hold if we move from the vocal-auditory channel to the manual-visual channel (gestures)?
- A broader picture of decoding the communication systems of non-human animals e.g., the Earth Species Project.

We gratefully acknowledge funding from: UK Research & Innovation, Future Leaders Fellowship (MR/T04229X/1; ARL), Swiss National Science Foundation (PCEFP1_186841: SM, ZJ; 310030_185324: AS), St Leonard College (AS), and Swissuniversities (AS). We thank also Klaus Zuberbühler, Josep Call, and the field assistants of the Budongo Conservation Field Station.