1 of 16

Базы данных и базы знаний

основы баз данных и баз знаний

2 of 16

База данных

База данных — представленная в объективной форме совокупность самостоятельных материалов (статей, расчётов, нормативных актов, судебных решений и иных подобных материалов), систематизированных таким образом, чтобы эти материалы могли быть найдены и обработаны с помощью электронной вычислительной машины (ЭВМ).

3 of 16

База знаний

База знаний в информатике и исследованиях искусственного интеллекта — это особого рода база данных, разработанная для оперирования знаниями (метаданными). База знаний содержит структурированную информацию, покрывающую некоторую область знаний, для использования кибернетическим устройством или человеком.

4 of 16

Базы данных

5 of 16

Базы знаний как современные интеллектуальные информационные системы

База знаний, БЗ (англ. Knowledge base, KB) — это особого рода база данных, разработанная для управления знаниями (метаданными), то есть сбором, хранением, поиском и выдачей знаний. Раздел искусственного интеллекта, изучающий базы знаний и методы работы со знаниями, называется инженерией знаний.

Под базами знаний понимается совокупность фактов и правил вывода, допускающих логический вывод и осмысленную обработку информация. Например, в языке Пролог базы знаний описываются в форме конкретных фактов и правил логического вывода над базами данных и процедурами обработки информации, представляющих сведения и знания о людях, предметах, фактах событиях и процессах в логической форме.

Наиболее важным свойством информации, хранящейся в базах знаний, является достоверность конкретных и обобщенных сведений в базе данных и релевантности информации, получаемой с использованием правил вывода, заложенных в базу знаний. В ответах на простейшие запросы к базам знаний системы логического программирования Пролог, выдает значения «истина» и «ложь» в зависимости от наличия соответствующих фактов.

Обобщенные сведения в языке Пролог задаются с помощью правил логического вывода, выполняющих роль определения понятий, а также логических процедур, состоящих из наборов правил логического вывода. Достоверность обобщенных сведений зависит от наличия необходимых фактов и достоверности данных в базах знаний.

Наиболее важный параметр БЗ — качество содержащихся знаний. Лучшие БЗ включают самую релевантную, достоверную и свежую информацию, имеют совершенные системы поиска информации и тщательно продуманную структуру и формат знаний.

6 of 16

Классификация баз знаний

В зависимости от уровня сложности систем, в которых применяются базы знаний, различают:

1) БЗ всемирного масштаба — например, Интернет или Википедия

2) БЗ национальные — например, Википедия

3) БЗ отраслевые— например, Автомобильная энциклопедия

4) БЗ организаций

5) БЗ экспертных систем

6) БЗ специалистов

7 of 16

Применение баз знаний

Простые базы знаний могут использоваться для создания экспертных систем и хранения данных об организации: документации, руководств, статей технического обеспечения. Главная цель создания таких баз — помочь менее опытным людям найти существующее описание способа решения какой-либо проблемы предметной области.

Онтология может служить для представления в базе знаний иерархии понятий и их отношений. Онтология, содержащая еще и экземпляры объектов не что иное, как база знаний.

База знаний — важный компонент интеллектуальной системы. Наиболее известный класс таких программ — экспертные системы. Они предназначены для построения способа решения специализированных проблем, основываясь на записях БЗ и на пользовательском описании ситуации.

Создание и использование систем искусственного интеллекта потребует огромных баз знаний.

8 of 16

Интеллектуальная информационная система

Интеллектуальная информационная система (ИИС) — это один из видов автоматизированных информационных систем, иногда ИИС называют системой, основанных на знаниях. ИИС представляет собой комплекс программных, лингвистических и логико-математических средств для реализации основной задачи: осуществление поддержки деятельности человека и поиска информации в режиме продвинутого диалога на естественном языке.

ИИС могут размещаться на каком-либо сайте, где пользователь задает системе вопросы на естественном языке (если это вопросно-ответная система) или, отвечая на вопросы системы, находит необходимую информацию (если это экспертная система). Но, как правило, ЭС в интернете выполняют рекламно-информационные функции (интерактивные баннеры), а серьезные системы (такие, как, например, ЭС диагностики оборудования) используются локально, так как выполняют конкретные специфические задачи.

Интеллектуальные поисковики отличаются от виртуальных собеседников тем, что они достаточно безлики и в ответ на вопрос выдают некоторую выжимку из источников знаний (иногда достаточно большого объема), а собеседники обладают «характером», особой манерой общения (могут использовать сленг, ненормативную лексику), и их ответы должны быть предельно лаконичными (иногда даже просто в форме смайликов, если это соответствует контексту :-)).

Для разработки ИИС раньше использовались логические языки (Пролог, Лисп и т. д.), а сейчас используются различные процедурные языки. Логико-математическое обеспечение разрабатывается как для самих модулей систем, так и для состыковки этих модулей. Однако на сегодняшний день не существует универсальной логико-математической системы, которая могла бы удовлетворить потребности любого разработчика ИИС, поэтому приходится либо комбинировать накопленный опыт, либо разрабатывать логику системы самостоятельно. В области лингвистики тоже существует множество проблем, например, для обеспечения работы системы в режиме диалога с пользователем на естественном языке необходимо заложить в систему алгоритмы формализации естественного языка, а эта задача оказалась куда более сложной, чем предполагалось на заре развития интеллектуальных систем. Еще одна проблема — постоянная изменчивость языка, которая обязательно должна быть отражена в системах искусственного интеллекта.

9 of 16

Классификация задач, решаемых ИИС

1) Интерпретация данных. Это одна из традиционных задач для экспертных систем. Под интерпретацией понимается процесс определения смысла данных, результаты которого должны быть согласованными и корректными. Обычно предусматривается многовариантный анализ данных.

2) Диагностика. Под диагностикой понимается процесс соотношения объекта с некоторым классом объектов и/или обнаружение неисправности в некоторой системе. Неисправность — это отклонение от нормы. Такая трактовка позволяет с единых теоретических позиций рассматривать и неисправность оборудования в технических системах, и заболевания живых организмов, и всевозможные природные аномалии. Важной спецификой является здесь необходимость понимания функциональной структуры («анатомии») диагностирующей системы.

3) Мониторинг. Основная задача мониторинга — непрерывная интерпретация данных в реальном масштабе времени и сигнализация о выходе тех или иных параметров за допустимые пределы. Главные проблемы — «пропуск» тревожной ситуации и инверсная задача «ложного» срабатывания. Сложность этих проблем в размытости симптомов тревожных ситуаций и необходимость учёта временного контекста.

4) Проектирование. Проектирование состоит в подготовке спецификаций на создание «объектов» с заранее определёнными свойствами. Под спецификацией понимается весь набор необходимых документов -- чертёж, пояснительная записка и т.д. Основные проблемы здесь — получение чёткого структурного описания знаний об объекте и проблема «следа». Для организации эффективного проектирования и в ещё большей степени перепроектирования необходимо формировать не только сами проектные решения, но и мотивы их принятия. Таким образом, в задачах проектирования тесно связываются два основных процесса, выполняемых в рамках соответствующей ЭС: процесс вывода решения и процесс объяснения.

5) Прогнозирование. Прогнозирование позволяет предсказывать последствия некоторых событий или явлений на основании анализа имеющихся данных. Прогнозирующие системы логически выводят вероятные следствия из заданных ситуаций. В прогнозирующей системе обычно используется параметрическая динамическая модель, в которой значения параметров «подгоняются» под заданную ситуацию. Выводимые из этой модели следствия составляют основу для прогнозов с вероятностными оценками.

10 of 16

Базы знаний в интеллектуальной системе

Ниже перечислены интересные особенности, которые могут (но не обязаны) быть у интеллектуальной системы, и которые касаются баз знаний.

1) Машинное обучение: Это модификация своей БЗ в процессе работы интеллектуальной системы, адаптация к проблемной области. Аналогична человеческой способности «набирать опыт».

2) Автоматическое доказательство (вывод): Способность системы выводить новые знания из старых, находить закономерности в БЗ. Некоторые авторы считают, что БЗ отличается от базы данных наличием механизма вывода.

3) Интроспекция: Нахождение противоречий, нестыковок в БЗ, слежение за правильной организацией БЗ.

4) Доказательство заключения: Способность системы «объяснить» ход её рассуждений по нахождению решения, причем «по первому требованию».

11 of 16

Машинное обучение

Машинное обучение (англ. Machine Learning) — обширный подраздел искусственного интеллекта, изучающий методы построения алгоритмов, способных обучаться. Различают два типа обучения. Обучение по прецедентам, или индуктивное обучение, основано на выявлении закономерностей в эмпирических данных. Дедуктивное обучение предполагает формализацию знаний экспертов и их перенос в компьютер в виде базы знаний. Дедуктивное обучение принято относить к области экспертных систем, поэтому термины машинное обучение и обучение по прецедентам можно считать синонимами.

Машинное обучение находится на стыке математической статистики, методов оптимизации и дискретной математики, но имеет также и собственную специфику, связанную с проблемами вычислительной эффективности и переобучения. Многие методы индуктивного обучения разрабатывались как альтернатива классическим статистическим подходам. Многие методы тесно связаны с извлечением информации, интеллектуальным анализом данных.

12 of 16

Общая постановка задачи обучения по прецедентам

Имеется множество объектов (ситуаций) и множество возможных ответов (откликов, реакций). Существует некоторая зависимость между ответами и объектами, но она не известна. Известна только конечная совокупность прецедентов — пар «объект, ответ», называемая обучающей выборкой. На основе этих данных требуется восстановить зависимость, то есть построить алгоритм, способный для любого объекта выдать достаточно точный ответ. Для измерения точности ответов определённым образом вводится функционал качества.

Данная постановка является обобщением классических задач аппроксимации функций. В классических задачах аппроксимации объектами являются действительные числа или векторы. В реальных прикладных задачах входные данные об объектах могут быть неполными, неточными, нечисловыми, разнородными. Эти особенности приводят к большому разнообразию методов машинного обучения.

13 of 16

Способы машинного обучения

1) Обучение с учителем - для каждого прецедента задаётся пара «ситуация, требуемое решение»:

- Метод коррекции ошибки

- Метод обратного распространения ошибки

2) Обучение без учителя - для каждого прецедента задаётся только «ситуация», требуется сгруппировать объекты в кластеры, используя данные о попарном сходстве объектов, и/или понизить размерность данных:

- Альфа-система подкрепления

- Гамма-система подкрепления

- Метод ближайших соседей

3) Обучение с подкреплением - для каждого прецедента имеется пара «ситуация, принятое решение»:

4) Активное обучение - отличается тем, что обучаемый алгоритм имеет возможность самостоятельно назначать следующую исследуемую ситуацию, на которой станет известен верный ответ:

5) Обучение с частичным привлечением учителя (semi-supervised learning) - для части прецедентов задается пара «ситуация, требуемое решение», а для части - только «ситуация»

6) Трансдуктивное обучение (transduction) - обучение с частичным привлечением учителя, когда прогноз предполагается делать только для прецедентов из тестовой выборки

7) Многозадачное обучение (multi-task learning) - одновременное обучение группе взаимосвязанных задач, для каждой из которых задаются свои пары «ситуация, требуемое решение»

8) Многовариантное обучение (multi-instant learning) - обучение, когда прецеденты могут быть объединены в группы, в каждой из которых для всех прецедентов имеется «ситуация», но только для одного из них (причем, неизвестно какого) имеется пара «ситуация, требуемое решение»

14 of 16

Типы входных данных при обучении

- Признаковое описание объектов — наиболее распространённый случай.

- Описание взаимоотношений между объектами, чаще всего отношения попарного сходства, выражаемые при помощи матрицы расстояний, ядер либо графа данных

- Временной ряд или сигнал.

- Изображение или видеоряд.

15 of 16

Базы знаний в интеллектуальной системе

1) Машинное обучение: Это модификация своей БЗ в процессе работы интеллектуальной системы, адаптация к проблемной области. Аналогична человеческой способности «набирать опыт».

2) Автоматическое доказательство (вывод): Способность системы выводить новые знания из старых, находить закономерности в БЗ. Некоторые авторы считают, что БЗ отличается от базы данных наличием механизма вывода.

3) Интроспекция: Нахождение противоречий, нестыковок в БЗ, слежение за правильной организацией БЗ.

4) Доказательство заключения: Способность системы «объяснить» ход её рассуждений по нахождению решения, причем «по первому требованию».

16 of 16