A Deep Dive into Multilingual
Hate speech Classification
Sai Saketh Aluru, Binny Mathew, Punyajoy Saha, Animesh Mukherjee�Department of Computer Science and Engineering, IIT Kharagpur, India
CNeRG
Warning!
The following presentation contains words or phrases that are often considered as offensive and hateful by many.
However this cannot be avoided due to the nature of the work.
Overview
Brief description of our work
Hatespeech and its hazards
�
TEXT | Hatespeech? |
I f**king hate ni**ers! | Yes |
Jews are the worst people on earth and we should get rid of them. | Yes |
Mexicans are f**king great people! | No |
Work description
Overall results - Toward a benchmark
Further details
Github Link: https://github.com/punyajoy/DE-LIMIT
HuggingFace: https://huggingface.co/Hate-speech-CNERG
SCAN ME!
Detailed Description
EFFECTS OF HATE SPEECH
Rohingya Genocide
Christchurch Shooting
Sri Lanka riot
Pittsburg Shooting
Plaguing all platforms
👹मुसलमानो को करारा जवाब है हर हिन्दु को शेयर करना चाहिये!!! *😡🚩😠🚩😡आज पता चलेगा कितने हिन्दु एक हो गये है!!!!..........*जागो...हिन्दु.....जागो.....
Plaguing all platforms
👹मुसलमानो को करारा जवाब है हर हिन्दु को शेयर करना चाहिये!!! *😡🚩😠🚩😡आज पता चलेगा कितने हिन्दु एक हो गये है!!!!..........*जागो...हिन्दु.....जागो.....
Gab
Our efforts
Spread of hate speech (WebSci’ 19, cscw’ 20)
Explainable hate speech detection (AAAI’ 21)
multilingual hate speech detection (ecml/pkdd’ 20, ACL’ 20)
Trapping hateful users (Hypertext’ 21)
Spread of fear speech (The webconf’ 21)
Counterspeech and its types (ICWSM’ 19)
multilingual hate speech detection
why is this necessary?
* - based on data from hatespeechdata.com
Related works
[1] Zhang, Ziqi, David Robinson, and Jonathan Tepper. "Detecting hate speech on twitter using a convolution-gru based deep neural network." In European semantic web conference, pp. 745-760. Springer, Cham, 2018.
[2] Corazza, Michele, Stefano Menini, Elena Cabrio, Sara Tonelli, and Serena Villata. "A multilingual evaluation for online hate speech detection." ACM Transactions on Internet Technology (TOIT) 20, no. 2 (2020): 1-22.
DATASET DESCRIPTION
Majority dataset in english
Dataset imbalance in most cases
Experimental Setup
LASER[1]:
MUSE[2]:
[1] Mikel Artetxe and Holger Schwenk. “Massively multilingual sentence embeddings for zero-shot cross-lingual transfer and beyond”. In: Transactions of the Association for Computational Linguistics 7 (2019), pp. 597–610.
[2] Lample, Guillaume, Alexis Conneau, Marc'Aurelio Ranzato, Ludovic Denoyer, and Hervé Jégou. "Word translation without parallel data." In International Conference on Learning Representations. 2018.
Model Architectures used
CNN - GRU:
BERT & mBERT:
experiments
hyperparameters
Results - Monolingual
Training
Language L
Validation & Testing
Same language L
Results - Monolingual
Training
Language L
Validation & Testing
Same language L
Results - Monolingual
Training
Language L
Validation & Testing
Same language L
Results - Monolingual
Training
Language L
Validation & Testing
Same language L
Results - Multilingual
Training
Dataset from all but one language
Validation & Testing
Target language dataset
Fine-tuning
Target language dataset �(incremental steps)
mBERT
All but one language datasets
Target language dataset (incremental steps)
Training
LASER + LR
Validation & Testing�Target language
Results - Multilingual
Training
Dataset from all but one language
Validation & Testing
Target language dataset
Fine-tuning
Target language dataset �(incremental steps)
mBERT
All but one language datasets
Target language dataset (incremental steps)
Training
LASER + LR
Validation & Testing�Target language
Results - Multilingual
Training
Dataset from all but one language
Validation & Testing
Target language dataset
Fine-tuning
Target language dataset �(incremental steps)
mBERT
All but one language datasets
Target language dataset (incremental steps)
Training
LASER + LR
Validation & Testing�Target language
Hate speech Benchmarks
Recipes for different languages and resource settings, as obtained in our experiments.
Interpretability (examples)
Interpretability analysis of LASER + LR and mBERT using LIME[3]
[3] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “” Why should I trust you?” Explaining the predictions of any classifier”. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016, pp. 1135–1144.
Interpretability (examples)
Yellow - LASER+LR
Green - mBERT
Sentences with hate label |
das pack muss tag und nacht gejagt werden,ehe sie es mit den deutschen machen !! Translation :- the pack must be hunted day and night before they do it with the Germans !! |
Interpretability analysis of LASER + LR and mBERT using LIME[5]
[5] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “” Why should I trust you?” Explaining the predictions of any classifier”. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016, pp. 1135–1144.
Interpretability (examples)
Yellow - LASER+LR
Green - mBERT
Sentences with hate label |
das pack muss tag und nacht gejagt werden,ehe sie es mit den deutschen machen !! Translation :- the pack must be hunted day and night before they do it with the Germans !! |
Interpretability analysis of LASER + LR and mBERT using LIME[5]
[5] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “” Why should I trust you?” Explaining the predictions of any classifier”. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016, pp. 1135–1144.
Interpretability (examples)
Yellow - LASER+LR
Green - mBERT
Sentences with hate label |
das pack muss tag und nacht gejagt werden,ehe sie es mit den deutschen machen !! Translation :- the pack must be hunted day and night before they do it with the Germans !! |
absolument ! il faut l’arraisonner en mer par la marin nationale arrêter tous les occupants expulser les migrant... @url Translation :- absolutely! it must be boarded at sea by the navy national arrest all occupants expel migrants... @url |
Interpretability analysis of LASER + LR and mBERT using LIME[5]
[5] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “” Why should I trust you?” Explaining the predictions of any classifier”. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016, pp. 1135–1144.
Interpretability (examples)
Yellow - LASER+LR
Green - mBERT
Sentences with hate label |
das pack muss tag und nacht gejagt werden,ehe sie es mit den deutschen machen !! Translation :- the pack must be hunted day and night before they do it with the Germans !! |
absolument ! il faut l’arraisonner en mer par la marin nationale arrêter tous les occupants expulser les migrant... @url Translation :- absolutely! it must be boarded at sea by the navy national arrest all occupants expel migrants... @url |
Interpretability analysis of LASER + LR and mBERT using LIME[5]
[5] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “” Why should I trust you?” Explaining the predictions of any classifier”. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016, pp. 1135–1144.
Error Analysis - Types of errors
Confounding Factors (CF)�Errors caused when model relies on some irrelevant features like normalized mentions and links.
Annotation Dilemma (AD)�Ambiguous instances, where according to us model predicts correctly but annotators have labelled it wrong.
Hidden Context (HC)�Errors due to model failing to capture context of the post
Abusive Words (AW)�Errors caused due to over dependance of model on abusive words in input.
Error analysis examples
mBERT:
LASER + LR:
Sentence | GT | P | E |
“Könnten wir Schmarotzer und Kriminelle loswerden würde die Asylanten-Schwemme auf beherrschbare Zahlen runtergehen.” Translation: If we could get rid of parasites and criminals, the asylum seeker flood would drop to manageable numbers. | 1 | 0 | HC |
Sentence | GT | P | E |
this movie is actually good cuz its so retarded. | 1 | 0 | AW |
Here “parasites”
refers to immigrants
Here “retarded” is used for movie.
NOTE:- For additional examples please check our paper
conclusion
Thank you
Github : �https://github.com/punyajoy/DE-LIMIT��HuggingFace : https://huggingface.co/Hate-speech-CNERG��Contact us:�Animesh Mukherjee: animeshm@cse.iitkgp.ac.in�