Should vortices be more ubiquitous in protoplanetary disk observations?
Michael Hammer
(No institution, …but ASIAA soon!! :-)
Collaborators: Min-Kai Lin (ASIAA), Paola Pinilla (MPIA), Kaitlin Kratter (Arizona)
Credit: �Nienke van der Marel
(nienkevandermarel.com/)
Should vortices be more ubiquitous in protoplanetary disk observations?
Michael Hammer
(No institution, …but ASIAA soon!! :-)
Collaborators: Min-Kai Lin (ASIAA), Paola Pinilla (MPIA), Kaitlin Kratter (Arizona)
Credit: �Nienke van der Marel
(nienkevandermarel.com/)
Do protoplanetary disks
typically contain vortices?
ALMA suggests no!
Question #1
How common are large-scale asymmetries*?
Credit: Nienke van der Marel
(nienkevandermarel.com/)
ALMA observations of mm dust
* (vortex candidates)
V1247 Ori
HD 135344B
AB Aur
CQ Tau
RY Lup
Only about 25% of disks* contain asymmetries!
HD 142527
Oph IRS 48
HD 34282
MWC 758
HD 143006
SR 21
Credit: Nienke van der Marel
(nienkevandermarel.com/)
van der Marel, N., �et al. 2021
* (resolved transition disks)
ALMA observations of mm dust
V1247 Ori
HD 135344B
AB Aur
CQ Tau
RY Lup
HD 142527
Oph IRS 48
HD 34282
MWC 758
HD 143006
SR 21
Credit: Nienke van der Marel
(nienkevandermarel.com/)
Only 2 disks have two-sided gaps* with an* asymmetry!
* (one or more)
ALMA observations of mm dust
V1247 Ori
HD 135344B
AB Aur
CQ Tau
RY Lup
Only 2 disks have two-sided gaps* with an* asymmetry!
HD 142527
Oph IRS 48
HD 34282
MWC 758
HD 143006
SR 21
* (one or more)
HD 135344 B
V1247 Ori
Cazzoletti, P., et al. 2018
Kraus, S., et al. 2017
* (with a planet??)
Can planets generate �these large-scale asymmetries?
.
.
.
Question #2
Yes, but…
…only if they just formed
AND
you may need to consider �the planet’s growth time.
Vortex Evolution (with Slow Planet Growth)
MH, Kratter, K., Lin, M.-K. 2017, MNRAS, 466, 3533
Extent �>180 degrees.
Lifetime �Lasts ~1500 orbits.
(~5x shorter than instant growth case!)
Notice:
MH, Lin, M.-K., Kratter, K., Pinilla, P., 2021�MNRAS, 504, 3963
ALMA Observation
Synthetic Image
HD 135344 B
(Dust at λ = 1.9 mm)
Cazzoletti, P., et al. 2018
~50 AU
Matching ALMA Observations
Beam
Elongated Vortex
(w/ slow growth)
Off-center peak!
Off-center peak!
Beam
ALMA Observation
Synthetic Image
HD 135344 B
(Dust at λ = 1.9 mm)
Cazzoletti, P., et al. 2018
~50 AU
(Not) Matching ALMA Observations
MH, Pinilla, P., Kratter, K., Lin, M.-K. 2019, MNRAS, 482, 3609
Compact Vortex
(w/ instant growth)
Too �compact!!
Peak not�off-center!!
Why do these vortices �look different?
There are two types�of vortices!!
Question #3
Two types of vortices!!
Compact
Gaussian model (Surville + Barge 2015)
Rossby number: Ro < -0.15
Elongated
GNG model (Goodman et al. 1987)
Rossby number: Ro > -0.15
INSTANT growth!!
SLOWER (realistic) growth!!
Why is the final vortex elongated?
MH, Lin, M.-K., Kratter, K., Pinilla, P., 2021�MNRAS, 504, 3963
The initial set of vortices are elongated!�(Ro > -0.15)
The final vortex has�no clear� vorticity minimum �at the center!
The Rossby number never drops to compact!
Why do elongated vortices�have off-center peaks?
The dust circulates �around the vortex.
Question #4
Different Vortex Structures
Compact Vortex
Elongated Vortex
Contour Levels:
1.10,
Gas
1.20,
1.30, 1.40, …, 2.70
[Σ / Σ0]
The dust circulates around the vortex!
Vortex is also elongated in the dust.
The peak is usually �off-center.
MH, Pinilla, P., Kratter, K., Lin, M.-K. 2019, MNRAS, 482, 3609
Does incorporating �the planet’s growth time� always shorten vortex lifetimes?
Not for lower-mass planets!
Question #5
Growing the planet even more realistically
Our Past Work:
More Realistic Approach:
Prescribe the growth of the planet.
�Have the planet accrete gas directly from the disk.
MH, Lin, M.-K., Kratter, K., Pinilla, P., 2021�MNRAS, 504, 3963
MH, Lin, M.-K., Kratter, K., Pinilla, P., 2021�MNRAS, 504, 3963
Notice:
Vortex re-forms? �Yes, multiple times:
t = 2610�t = 3150�t = 3660
Lifetime �Vortex is still alive at the end of this movie:�t = 6000
Vortex (with H/R = 0.06 and 0.20 MJup planet)
MH, Lin, M.-K., Kratter, K., Pinilla, P., 2021, MNRAS, 504, 3963
Dust snapshots (with 0.2 MJup planet)
Note:
Dust asymmetry survives in-between gas vortices.
MH, Lin, M.-K., Kratter, K., Pinilla, P., 2021�MNRAS, 504, 3963
Vortex Lifetimes
Note:
Because of �later-generation vortices,�
the low-mass planets�produce �longer vortex lifetimes.
How do you kill a vortex?
Question #6
(from the planet’s spiral waves)
Viscosity!
but not always!
(but only if 𝜶 > 10-4)
Shocks!
MH, Lin, M.-K., Kratter, K., Pinilla, P., 2021�MNRAS, 504, 3963
Vortex Evolution (with H/R = 0.08)
Notice:
Vortex Growth�
After first 200 orbits,
nothing happens!
The vortex is still alive �at the end.
The shocks passing through the vortex �are weaker!
Do these trends occur �with higher viscosity?
Question #7
No, viscosity still shortens vortex lifetimes.
MH, Lin, M.-K., Kratter, K., Pinilla, P., 2021�MNRAS, 504, 3963
Vortex Lifetimes ( at 𝝂 = 10-7 and 𝝂 = 10-6 )
With 𝝂 = 10-6 ,�vortices are�short-lived regardless of �planet mass.
𝝂 = 10 -7
𝝂 = 10 -6
Viscosity
At least in some cases, yes!
AND
Should vortices be more ubiquitous in protoplanetary disc observations?
Question #8
Figuring out why may constrain planet or disc properties.
DS Tau
FT Tau
MWC 480
DL Tau
9.65 MJup
0.44 MJup
0.40 MJup
0.34 MJup
Disc w/ Gap
Planet mass
CI Tau
CI Tau
0.40 MJup
0.42 MJup
Chances of Observing Vortices in Taurus
Sample from �Long, F., et al. 2018
(NO asymmetries!)
Mass estimates by �Lodato, G., et al. 2019��(over-estimates assuming �a low viscosity)
(per solar mass)
Gap location
33 AU
73 AU
48 AU
25 AU
89 AU
120 AU
Chance
(Lifetime = 1000 orbits)
(Cluster Age = 2 Myr)
12%
23%
10%
42%
68%
18%
There should be� at least ONE vortex!
(but there are none)
Why are there so few asymmetries?
(and what can we learn?)
Higher viscosity?
Planet migration?
Vortex forms later?
Strong dust feedback?
Sub-optimal cooling time?
Strong disc self-gravity?
Planet formed early!
Dust-to-gas ratio must be high!
Not in 3-D?!!
Viscosity may not be so low!
Planet massive enough to create vortex, but not if it is migrating!
Planet can’t be too massive!
(more relevant for outer disc)
𝞫 ≳ 1.0 Ω-1 weakens vortices
Lyra, W., et al. 2018;
MH, et al. in prep. b
Fung, J. + Ono, T. 2021; Rometsch, T., et al. 2021
May be realistic in outer disc?!!
Bae, J., et al. 2021; Malygin, M., et al. 2017
MH, et al. 2021
e.g. MH, et al. 2021
Kanagawa et al. 2021;
MH, et al. in prep. a
Relevant for Q < (H/R)-1, but weaker for lower-mass discs
Elongated planet-induced vortices are characterized by (1) wider azimuthal extents and (2) off-center peaks.
Summary
With H / R ≤ 0.06, lower-mass planets create longer-lived asymmetries because of the vortex re-forming.
With H / R ≥ 0.08, vortices are long-lived �because of weaker shocks from the planet.
Have questions? Contact�mhammer@email.arizona.edu
Test vortex-killing mechanisms w/ large H / R values!
It’s still problematic that so few systems have �large-scale asymmetries that could be vortices.
Other Signatures of Elongated Vortices
(1) Dust extent not always as wide as �gas extent!
(2) Double peak�also possible!!
Dust supply is cut off!
Double Peak Signature in Real Discs
Boehler, Y. et al. 2021
Kraus, S. et al. 2017
V1247 Orionis
HD 142527
What does it take to�re-form a vortex?
A sharp spike in .
Question #7
A new sharp pressure bump?
Pressure Bumps (with 0.6 MJup planet)
Initial Vortex
End State
MH, Lin, M.-K., Kratter, K., Pinilla, P., 2021�MNRAS, 504, 3963
P (with 0.6 MJup planet)
Initial Vortex
End State
MH, Lin, M.-K., Kratter, K., Pinilla, P., 2021�MNRAS, 504, 3963
Pressure Bumps (with 0.6 MJup planet)
Initial Vortex
End State
MH, Lin, M.-K., Kratter, K., Pinilla, P., 2021�MNRAS, 504, 3963
P (with 0.6 MJup planet)
Initial Vortex
End State
MH, Lin, M.-K., Kratter, K., Pinilla, P., 2021�MNRAS, 504, 3963
MH, Lin, M.-K., Kratter, K., Pinilla, P., 2021�MNRAS, 504, 3963
Evolution (with 0.6 MJup planet)
Notice:
A spike appears after the initial vortex dies�(t > 1350 orbits).
But it doesn’t affect�the pressure bump!
MH, Lin, M.-K., Kratter, K., Pinilla, P., 2021�MNRAS, 504, 3963
Vortex Evolution (with 0.6 MJup planet)
Notice:
Vortex re-forms? �No, not at the pressure bump.
But vortices do re-form�inside the �pressure bump!
MH, Lin, M.-K., Kratter, K., Pinilla, P., 2021�MNRAS, 504, 3963
Vortex Evolution (with 0.2 MJup planet)
Notice:
Vortex re-forms? �Yes, multiple times:
t = 2610�t = 3150�t = 3660
Lifetime �Vortex is still alive at the end of this movie:�t = 6000
MH, Lin, M.-K., Kratter, K., Pinilla, P., 2021�MNRAS, 504, 3963
Evolution (with 0.2 MJup planet)
Notice:
Tiny spikes �appears after �the initial vortex dies�(t = 2350 orbits).
They affect the whole pressure bump!
Separation must be �less than �3 scale heights!
Early Vortex Evolution
…with Instant Growth:
…with Slower Growth:
(1) Planet grows to full size.
(2) Disk becomes unstable.
(3) A compact vortex forms.
(Ro < -0.15)
(4) Vortex smooths gap edge.
(1) Disk becomes unstable.
(2) An elongated vortex forms.� (Ro > -0.15)
(3) Vortex smooths gap edge.
(4) Planet grows to full size.
MH, Lin, M.-K., Kratter, K., Pinilla, P., 2020�to be submitted
Vortex (with H/R = 0.06 and 0.6 MJup planet)
Notice:
Extent �Still very elongated!
Lifetime �Lasts ~1200 orbits.
�(similar to the prescribed�slow growth case)
Vortex re-forms? �No.