
DRILL EXCHANGE
ENHANCEMENTS
PROPOSAL
SALIM ACHOUCHE

AGENDA

1. CURRENT EXCHANGE IMPLEMENTATION
○ INTRODUCTION
○ COMMUNICATION INFRASTRUCTURE
○ ANALYSIS

2. EXCHANGE ENHANCEMENTS PROPOSAL

CURRENT EXCHANGE
IMPLEMENTATION

INTRODUCTION
TO THE
EXCHANGE OPERATORS

DRILL EXCHANGE OPERATOR

● Not related to Drill Bit Exchange 😀
● The Exchange Operator enables parallel query

execution
○ Inter & Intra operator parallelism
○ Links two Drill fragments running concurrently
○ Data flows from the producer to consumer

fragments
● Exchange Characteristics

○ Topology -
■ One-to-many (Partitioned / Broadcast)
■ Many-to-one (Union)

○ Supports Ordering
○ Partitioning Strategy

■ Hash
● Exchanges are logical operators

○ Composed of elementary physical exchange
constructs

○ Sender & Receiver

Drill

Producer Fragment Consumer Fragment

EXCHANGE

INPUT EX
C

H
A

N
G

E

https://www.drillbitexchange.com/

EXCHANGE OPERATORS - Logical Exchanges
LOGICAL EXCHANGE RECEIVER SENDER

BROADCAST Unordered Receiver Broadcast Sender

HASH to MERGE Merging Receiver Hash Partition Sender

HASH to RANDOM Unordered Receiver Hash Partition Sender

ORDERED MUX Merging Receiver Single Sender

ORDERED PARTITION Unordered Receiver Ordered Partition Sender

SINGLE MERGE Merging Receiver Single Sender

UNION Unordered Receiver Single Sender

UNORDERED DEMUX Unordered Receiver Hash Partition Sender

UNORDERED MUX Unordered Receiver Single Sender

EXCHANGE OPERATORS - Exchange Primitives

SINGLE SENDER PARTITION SENDER BROADCAST SENDER

UNORDERED RECEIVER MERGING RECEIVER

75

9
MERGER

6 8

3 2 1

Payload

Sender

Receiver

EXCHANGE OPERATORS - Multiplexing

DRILLBIT

Payload

Single
Sender

Unordered
Receiver

DRILLBIT

DRILLBIT

Hash
Sender

MUXING

DE-MUXING

De-Mux phase is
currently not
enabled by default;
in which case,
Hash to Random is
instead used.

DE-MUXING

EXCHANGE OPERATORS - Unit of Exchange

● RecordBatch is the unit of exchange
○ Holds a batch of rows
○ Input for Sender operators
○ Serialized into FragmentWritableBatch

● FragmentWritableBatch
○ Made up of protobuf headers (describes each column data)
○ One contiguous byte array to hold (nullable info, offsets, and data)

Record Batch

Value
Vector

ColumnColumn Column

Value
Vector

..

Value
Vector..

Fragment Writable Batch

Column
Header

Column
Header

Column
Header..

Column
Data

Column
Data

Column
Data..

..

Invoked before sendRecordBatch()

Headers (Protobufs)

Data Buffers

EXCHANGE OPERATORS - Hash Partitioner Implementation

INPUT
RECORD
BATCH

PARTITIONER TASK

PARTITION OUTGOING
RECORD
BATCH

FRAGMENT
WRITABLE

BATCH
SERIALIZE SEND

IMPLEMENTATION NOTES

● Each Sender Partitioner task targets a different set of receivers
● Outgoing record batches are flushed when they reach 1k rows
● The number of Partitioner tasks

○ Computed based on cost and number of receivers
○ Configured by end user

● The Input Batch read repeatedly (once per Partitioner tasks)

EXCHANGE OPERATORS - Batch Acknowledgment

SENDER

● Each Sender is allowed to send upto three batches
● A semaphore of limit three used to implement this logic
● Acknowledgments

○ Received asynchronously
○ Cause the SEND semaphore to increment

RECEIVER
● Acknowledgment logic performed within each minor fragment
● Acknowledgment sent when

○ Number of enqueued batches is below soft limit
■ <buffer-size-per-socket> x <num-senders>
■ buffer-size-per-socket configurable (default: six)

○ Record batch is consumed
● Acknowledgment influenced by the Data Collector used

○ Partitioned → when ordering is used
○ Merged → when ordering is not needed

COMMUNICATION
INFRASTRUCTURE

NETTY NIO TRANSPORT

● Netty exposes easy to use NIO wrappers
● Main Concepts

○ Event Loop Group
○ Channel
○ Channel Event
○ Channel Pipeline
○ Channel Handler

● Pipelining makes it easy to support
○ Compression
○ Encryption
○ Authentication
○ Transport Protocols
○ RPC

SELECTOR

CHANNEL CHANNEL CHANNEL

CHANNEL
EVENT

CHANNEL
PIPELINE

CHANNEL
HANDLER

B
O

S
S

 E
X

E
C

U
TO

R
W

O
R

K
E

R
 E

X
E

C
U

TO
R

 DRILLBIT RPC - Send Data

DATA CLIENT CHANNEL

DATA CLIENT CHANNEL PIPELINE

Network
SINK

PROTOBUF
DECODER

HANDSHAKE
HANDLER

EXCEPTION
HANDLER

MESSAGE
HANDLER

PROTOBUF
ENCODER

MESSAGE QUEUE

MSG MSG MSG

Client Event Loop Group
(10 threads)

DATA CLIENT CONNECTION

RPC LISTENER MAP

REQUEST ID

PUBLISH RESPONSE

BUFFER ALLOCATOR
(Root Allocator)

 DRILLBIT RPC - Receive Data

DATA SERVE CHANNEL

DATA SERVER CHANNEL PIPELINE

Network
SINK

PROTOBUF
DECODER

HANDSHAKE
HANDLER

EXCEPTION
HANDLER

MESSAGE
HANDLER

PROTOBUF
ENCODER

MESSAGE QUEUE

MSG MSG MSG

Server Event Loop Group
(10 threads)

DATA SERVER CONNECTION

SERVER REQUEST
HANDLER

INBOUND RPC MSG

(BATCH-OBJ, ACK)

BUFFER ALLOCATOR
(Data Allocator)

DRILLBIT WORK BUS

● Asynchronous reference Counted ACK
mechanism

● Uses Request ID and current channel to send
response

● Batch Object contains recipient information

FRAGMENT MANAGER

MINOR FRAGMENT

DRILLBIT RPC - Fragment Batch Queue

Incoming Record Batches

● Received asynchronously
● Enqueued within a single queue (unordered exchange)
● Enqueued in a per sender queues (ordered exchange)
● Acked when consumed by receiver exchange
● Memory ownership transferred to the exchange operator

FRAGMENT MANAGER

INCOMING BUFFERS

BATCHBATCHBATCH

SENDER ID

EXCHANGE OPERATOR
(receiver)

DRILLBIT RPC - Network Topology

DRILLBIT

CLIENT
CHANNEL

SERVER
CHANNEL

 FRAGMENT
(QUERY-I)

 FRAGMENT
(QUERY-II)

DRILLBIT

CLIENT
CHANNEL

SERVER
CHANNEL

 FRAGMENT
(QUERY-I)

 FRAGMENT
(QUERY-II)

● Data Client Connections
○ Drillbit-A opens one data connection to another Drillbit-B
○ A global pool is maintained for connection sharing

● Data Server Connections
○ Drillbit-A creates a server side socket when Drillbit-B initiates a client connection

● Acknowledgment sent from server to client sockets
○ TCP connections are duplex

● Control & User requests use different Client / Server connections

ANALYSIS

ANALYSIS
KEY ASPECTS to CONSIDER

● Scalability
● Resource Management
● Performance

SCALABILITY

● Muxer & DeMuxer exchanges should allow Drillbits to scale
● Not sure why DeMuxer is disabled by default

○ Previous analysis only discussed Muxer issues
○ Need to use local Data Tunnel

RESOURCE MANAGEMENT

● Weak
○ Record batch constrained by number of rows
○ Number of prefetch record batches hardcoded
○ No quota for Send / Receive record batch queues

ANALYSIS - continued
PERFORMANCE

● Hash Partition Sender
○ Number of threads has no impact on memory usage
○ Repeated reading of input batch
○ Partitioner tasks can block

■ During flush when receiver(s) didn’t ACK sent batches
■ Waiting on other tasks to finish processing the current document

○ Record batch flushed only when full
■ What about latency?

● Record batches hash-partitioned twice
● Demuxed record batches can be small
● No optimization for local record batches
● Shared Data Channels

○ Data tunnels backed by one shared data channel
○ Receivers must consume sent data to avoid blocking other queries

EXCHANGE ENHANCEMENTS
PROPOSAL

EXCHANGE ENHANCEMENTS
OVERVIEW

EXCHANGE ENHANCEMENTS
MULTIPLEXING

● Improve processing performance
● Manage resource utilization
● Dynamic control flow

EXCHANGE OPERATORS

● Manage resource utilization
● Optimize local transfers

MULTIPLEXING
ENHANCEMENTS

OVERVIEW

SENDER
RECORD POOL

INCOMING
RECORD QUEUE

RECORD QUEUE
+

ROUTING INFO

RECEIVER
RECORD POOL

RECEIVER

PER NODE
MULTIPLEXED

RECORD QUEUE

SENDER
RECORD POOL

Multiplexed record
batch also includes
receiver identifiers for
every row

 MULTIPLEXED
RECORD QUEUE RECORD BATCH

ROUTERROUTER
TASK

PARTITIONER
TASK

LOCAL
PARTITIONER

TASK

<<Local>>
HASH PARTITION SENDER

RESOURCE MANAGEMENT

<<Local>>
UNORDERED RECEIVER

HASH PARTITION SENDER

INCOMING QUEUE

BATCH BATCH

INCOMING QUEUE

BATCH BATCH

OUTGOING QUEUE

BATCH BATCH

INCOMING QUEUE

BATCH BATCH

MUXER MEMORY
POOL

UNORDERED RECEIVER

INCOMING QUEUE

BATCH BATCH

DE-MUXER MEMORY
POOL

OUTGOING QUEUE

BATCH BATCH

Sender given a fixed memory budget

● Incoming record batch pool
○ “incoming-pool-num-records” = “incoming-record-pool-size” / “record-batch-size”
○ Ideally

■ “incoming-record-pool-size” ~ [10% - 20%] of sender-memory-budget
■ 1Mb <= “record-batch-size” <= 4Mb; promotes concurrent processing
■ “incoming-record-queue-size” at least equal to the number of Router tasks

● Outgoing record batch pool
○ “outgoing-pool-num-records” = “outgoing-record-pool-size” / “outgoing-record-batch-size”
○ Ideally

■ “outgoing-record-pool-size” ~ [70% - 80%] of sender-memory-budget
■ 256Kb <= “outgoing-record-batch-size” <= 1Mb
■ Smaller size improves latency while larger size decreases receiver’s processing overhead

Receiver given a fixed memory budget

● “receiver-pool-num-records” = “receiver-incoming-record-pool-size” / “sender-outgoing-record-batch-size”
● “receiver-window-size” = “receiver-pool-num-records” / “number-of-senders”

The Receiver window size importance diminishes as the number of node receivers increase; the protocol should be able to handle a value of zero (currently,
the lowest value is one)

RESOURCE MANAGEMENT - Continued

Local Sender

● Exchanges should use small record batches
○ When number of local receivers is large

● Midstream operators can increase the record batch size
○ Minimize the framework execution overhead

Local Receiver

● Incoming record queue can be smaller than number of senders
● The exchange protocol should automatically advertise the window size

○ A value of zero means the sender cannot send

RESOURCE MANAGEMENT - Continued

EXAMPLE -

● Drill cluster made up of 100 nodes
● Aggregate memory budget 150Mb
● Hash Sender

○ Memory budget 66Mb
○ Incoming Pool

■ “incoming-record-pool-size” = 16Mb
■ “record-batch-size” = 4MB
■ “incoming-record-queue-size” = 4

○ Outgoing Pool
■ “outgoing-record-pool-size” = 50Mb
■ “outgoing-record-batch-size” = 512kb
■ “outgoing-pool-num-records” = 100

● Receiver
○ “receiver-incoming-record-pool-size” = 50Mb
○ “receiver-pool-num-records” = 100
○ “receiver-window-size” = 1

● Local Sender & Receiver
○ 16Mb for the receiver (4 records)
○ 16Mb for the sender

■ Batch size will be adjusted based on the # of receiving minor fragments

RESOURCE MANAGEMENT - Continued

Exchange Execution Service
● Shared thread pool
● Number of threads should be capped (4 threads ideal)
● Associated tasks never allowed to perform IO or block

Enqueue Task

● Executed by the fragment thread
● Enqueues new record batches

○ Blocks if the queue capacity reached
○ Submits a router task to process the enqueued record batch

Router Task
● Executed by the Exchange Execution Service
● Responsible for computing routing information

○ Computes (“node-id”, “receiver-id”*) for every row
○ Adds (“record-batch”, “routing-info”) into per Partitioner task table

■ Record batches are processed according to original enqueue order
■ The record batch is reference counted

○ “partitioner-id” = “node-id” % “num-partitioner-tasks”
○ Submits new partitioner tasks if they had no work

* Receiver identifier after demuxing

MUXER CHANGES - Hash Partition Sender

Partitioner Task
● Executed by the Exchange Execution Service
● Responsible for creating outgoing record batches for a subset of the receiver nodes

○ Picks oldest (“record-batch”, “routing-info”) entry
○ Constructs “outgoing-record-batch”; “receiver-id” column added to the record batch
○ “outgoing-record-batch” flushed when full or “max-wait-time” reached*
○ Decrement input record batch when fully processed

■ When value reaches zero execute Incoming Queue deque logic
○ Amount of execution should be capped
○ A new partitioner task should be submitted

■ Before exiting and there is remaining work

* Get time computed at start of loop and then compared to batch-creation-time

MUXER CHANGES - Hash Partition Sender

Enqueue Task
● Executed by the fragment thread
● Enqueues new record batches

○ Blocks if the queue capacity reached
○ Adds “record-batch” into all Partitioners task table

■ Record batches are processed according to original enqueue order
■ The record batch is reference counted

○ Submits partitioner tasks if they had no work

Router Task
● None
● Incoming record batch already contains “receiver-id”

Local Partitioner Task
● Same as Muxer with the exception that Local Data Tunnels should be used

DE-MUXER CHANGES - Hash Partition Sender

