W& LangChain

Deploying templates w/ hosted LangServe:
neo4j-semantic-layer example

Lance Martin
Software Engineer, LangChain
@RLanceMartin

https://twitter.com/RLanceMartin

W& LangChain

Create a LangServe app

$ conda create -n langserve-test-env python=3.11

$ conda activate langserve-test-env

$ pip install -U "langchain-cli[serve]" "langservel[all]"
$ langchain app new

W& LangChain

~
~

LangServe creates a web service for any chain

W& LangChain

HTTP endpoints that expose methods of LCEL chain

; LangServe app \

| 1

o SR : T |
Lo ' .invoke | ! /invoke :
L S ‘. (T .
Lo LCEL chain | _.batch |— /batch ;
i | .’:::I _______________________ ' (T \
| .stream | —! /stream

https://python.langchain.com/docs/expression_language/why

https://python.langchain.com/docs/expression_language/why

W& LangChain

Library of templates that can be immediately deployed!

rag OpenAl | Pinecone.

rag-conversation

extraction-openai-functions

onversational RAG using Pinecone

ot w8 © oithub

rag Astrabs. rag Openal | Cassandra

rag-astradb

hAl function calling for tasks ke,

W& LangChain Templates

+ Request a template

Featured

extraction OpenAl Function Caling agent Anthropic rag (GpenAl

xmi-agent

505 XML syntax 0 communicate Its.

w0 Qo ws

Al

rag Openall | Cassandra rag Openall Vectara

by Datastax

RAG using AstraDB
O it @ 125 ©cithus @ 108

rag Openall Momento rag Neos) | Openal

ynony! 9 g

by Vect

aching backed by Apache. RAG using vectara retriever

O citwb @ 106 O citur @ 16

research Openal extraction Openal

i g
by Nead)

Balance precise embeddings and.

Qi @ 14 ot w13

Popularity

Chroma Gptdall Ollama

rag-chroma-private
by LangChain

M, embeddings,

Qo w8

rag Openal | Vectara

rag-vectara-multiquery
by Vectara

RAG using vectara with muliauery.

O ot w16

rag Neod) | Openal

by LangChain

Use Openél function caling for tasks |

Ot wm O cithus @ 10

i-p:
by Neat)

Balance precise embeddings and.

O ot w10

research OpenAl | Tavily

openai-functions-agent

Agent using Opensl function callng to execute.

ot w9

rag Openal | Google

rag-google-cloud-vertexai-...
by Datatanic

RAG using Google Vertex Al Search

Qcitur w14

research Openal | Tavily

openai-functions-agent
oy LangChain

Agent using Opendl function calling to

O ot ®

Web service (LangServe)

\
1
1
. N !
L

Chain

https://templates.langchain.com/

https://templates.langchain.com/

W& LangChain

Choose our template

$ langchain app new .

What package would you like to add?
1 added. Any more packages (leave blank to end)?:

Would you like to install these templates into your environment with pip? [y/N]y

(leave blank to skip) :neod4j-semantic-layer

https://github.com/langchain-ai/neo4j-semantic-layer

https://github.com/langchain-ai/neo4j-semantic-layer

W& LangChain

App structure

/app

Add LCEL chain methods as
/server.py

endpoints in web service

/packages
/neo4j-semantic-layer A Neo4j-semantic-layer
/neo4j-semantic-layer >_ template is a package
/__init .py and agent.py has our
/agent.py D LCEL chain defined

/pyproject. toml

/pyproject. toml

https://github.com/langchain-ai/neo4j-semantic-layer

https://github.com/langchain-ai/neo4j-semantic-layer

W& LangChain

App structure

LangServe app

i II,, ,’:l ————————— \ (CTTTTTTTTTT T b YD)
L . .invoke |— ! /invoke

5 S L :

' | Agentchain | .batch {— ! /batch e
- s I =
Lo | .stream | — ! /stream
Lo N . / S PP ——— ’

server.py
from neo4j semantic layer import agent executor as neo4j semantic agent

add_routes (app, neo4j semantic agent, path="/neo4j-semantic-layer")

add_routes in server.py creates HTTP
endpoints that expose the methods of
_____________ the LCEL chain via the web server!

3559LangCham

Run the server locally

$ poetry install
$ langchain serve

W& LangChain

Use hosted LangServe

https://qithub.com/langchain-ai/neo4j-semantic-layer

https://github.com/langchain-ai/neo4j-semantic-layer

W& LangChain

Appendix

W& LangChain

LCEL enables composition of chains

from langchain_openai import ChatOpenAIl
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser

|prompt = ChatPromptTemplate.from_template("Tell me a short joke about {topic}“)|
[model = ChatOpenAI(model="gpt-3.5-turbo")]
loutput_parser = StrOutputParser() |

chain =|prompt| | |model| | |output_parser

W& LangChain

LCEL objects have a runnable interface w/ common invocation methods

chain.invoke({"topic": "bears"})

AIMessage(content="Why don't bears wear shoes?\n\nBecause they already have bear feet!")

https://python.langchain.com/docs/expression_language/interface

https://python.langchain.com/docs/expression_language/interface

W& LangChain

Many use-cases can be expressed using LCEL objects

Cookbook

Example code for accomplishing common tasks with the LangChain Expression Language (LCEL). These examples show how to

compose different Runnable (the core LCEL interface) components to achieve various tasks. If you're just getting acquainted with

LCEL, the Prompt + LLM page i a good place to start.

* Prompt + LLM

The most common and valuable composition is taking:

* Multiple chains

Runnables can easily be used to string together multiple Chains

* Agents

You can pass a Runnable into an agent.

* Routing by semantic similarity

With LCEL you can easily add [custom routing

* Adding moderation

This shows how to add in moderation (or other safeguards) arou...

* RAG

Let's look at adding in a retrieval step to a prompt and LLM, whic.

* Querying a SQL DB

We can replicate our SQLDatabaseChain with Runnables.

* Code writing

Example of how to use LCEL to write Python code.

* Adding memory

This shows how to add memory to an arbitrary chain. Right now,

* Managing prompt size

Agents dynamically call tools. The results of those tool calls are

https://python.langchain.com/docs/expression

lanquag

e/cookbook/

https://python.langchain.com/docs/expression_language/cookbook/

W& LangChain

Challenges w/ production

Prototyping Production

Async Support Often synchronous (e.g., Jupyter)

Streaming

Parallel execution

Retries / fallback

Often Required
Access intermediate results Often optional

I / O validation

Ease of deployment

Observability

https://python.langchain.com/docs/expression language/

https://python.langchain.com/docs/expression_language/

W& LangChain

LCEL enables same code for prototyping + production!

Prototyping Production

Async Support

Streaming

Every LCEL object supports these!
Parallel execution

Retries / fallback

Access intermediate results

I / O validation

Ease of deployment

Observability

https://python.langchain.com/docs/expression language/

https://python.langchain.com/docs/expression_language/

W& LangChain

LangServe addresses I/0 validation and deployment

Prototyping Production

Async Support

Streaming

LCEL
Parallel execution

Retries / fallback

Access intermediate results

I / O validation LCEL + LangServe

Ease of deployment

Observability

https://python.langchain.com/docs/expression language/

https://python.langchain.com/docs/expression_language/

’
’

W& LangChain

Interact with the app in various ways

[

i /invoke
{_::::::::::::::::::::::::::::::
! /batch
{_::::::::::::::::z:::::::::::::
! /stream

R

NSe———

SDK, requests, curl, Playground

from langchain.schema import SystemMessage, HumanMessage
from langchain.prompts import ChatPromptTemplate

import requests

from langchain.schema.runnable import RunnableMap

from langserve import RemoteRunnable

openai = RemoteRunnable("http://localhost:8000/openai/")
anthropic = RemoteRunnable("http://localhost:8000/anthropic/")

response = requests.post(
"http://localhost:8000/joke/invoke",

joke_chain = RemoteRunnable("http://localhost:8000/joke/"))

joke_chain. invoke({"topic": "parrots"})

curl --location —-request POST 'http://localhost:80@
—--header 'Content-Type: application/json' \

—-data-raw '{
“input": {
Stropict: *cats"
}
3

json={'input': {'topic': 'cats'}}
response.json()
W LangServe Playground
Tryit
Inputs
INPUT* is a required property

https://github.com/langchain-ai/langserve

https://github.com/langchain-ai/langserve

W& LangChain

Challenges w/ production

Prototyping Production

Async Support

Streaming

LCEL
Parallel execution

Retries / fallback

Access intermediate results

I / O validation LCEL + LangServe

Ease of deployment

Observability LCEL + LangServe + LangSmith

https://docs.smith.langchain.com/

https://docs.smith.langchain.com/

W& LangChain

Use hosted LangServe for a managed server

& Create deployment

Create New Deployment

Launch a server that's publicly available in one-click

Deployment details
Name it and link to the GitHub
repository

Q langchain-ai v Q Select arepo...

GitHub Repo URL *

& Paste URL...
This field is required
Name *

ht-gripping-baseline-11

Subdirectory (optional)

Git Reference (optional)

main

Environment Variables

Use environment variables to
specify APl keys to LLM providers
and other services

+ Add

W& LangChain

Both expose the agent methods and playground!

W LangServe Playground

Try it

Inputs Reset

INPUT*
i am interested in film noir. suggest some of the most famous film noir and provide a
description of the major themes.

CHAT HISTORY +

HUMAN
i am interested in film noir. suggest some of the most famous film noir and provide a
description of the major themes.

Al
Here are some famous Film-Noir movies:

1. **Sunset Blvd. (a.k.a. Sunset Boulevard)**: This is a classic film noir about a
struggling screenwriter who is drawn into the world of an aging silent film star who is
descending into madness. The movie explores themes of ambition, desperation, and
the dark side of Hollywood.

2. **High and Low (Tengoku to jigoku)**: This is a Japanese film noir directed by
Akira Kurosawa. The story revolves around a businessman who is faced with a moral

Playground

https://neo4j-semantic-layer-app-4c0c4aebed1a520e885a28ab-ffoprvkqsa-uc.a.run.app/neo4j-semantic-layer/playground/

W& LangChain
It also integrates with LangSmith

Trace Stats & Most relevant & | ChatOpenAI

Run Feedback Metadata a

/neodj-semantic-layer @ SUCCESS

©2773s < 870 X
Functions & Tools

| ChatOpenAl 2.37s

Recommender 0.03s Information N
©| ChatOpenAl 25.21s
Recommender >
(@ Some runs have been hidden. Show 14 hidden runs
Input
SYSTEM

You are a helpful assistant that finds information about movies and recommends them. If tools
require follow up questions, make sure to ask the user for clarification. Make sure to include any
available options that need to be clarified in the follow up questions

HUMAN

i am interested in film noir. suggest some of the most famous film noir and provide a description of
the major themes.

Trace

https://smith.langchain.com/public/47b3e5dd-c6d8-434a-a5d6-b3bfdd9c4247/r

