
Deploying templates w/ hosted LangServe:
neo4j-semantic-layer example

Lance Martin
Software Engineer, LangChain

@RLanceMartin

https://twitter.com/RLanceMartin

Create a LangServe app

$ conda create -n langserve-test-env python=3.11
$ conda activate langserve-test-env
$ pip install -U "langchain-cli[serve]" "langserve[all]"
$ langchain app new .

LangServe creates a web service for any chain

Chain Methods

LangServe app

HTTP endpoints

LCEL chain

LangServe app

.invoke

.batch

.stream

/invoke

/batch

/stream

https://python.langchain.com/docs/expression_language/why

HTTP endpoints that expose methods of LCEL chain

https://python.langchain.com/docs/expression_language/why

Library of templates that can be immediately deployed!

https://templates.langchain.com/

Template
Chain

.invoke

.batch

.stream

/invoke

/batch

/stream

Web service (LangServe)

https://templates.langchain.com/

Choose our template

https://github.com/langchain-ai/neo4j-semantic-layer

$ langchain app new .
What package would you like to add? (leave blank to skip): neo4j-semantic-layer
1 added. Any more packages (leave blank to end)?:
Would you like to install these templates into your environment with pip? [y/N]: y

https://github.com/langchain-ai/neo4j-semantic-layer

App structure

https://github.com/langchain-ai/neo4j-semantic-layer

/app
/server.py

/packages
/neo4j-semantic-layer

/neo4j-semantic-layer
/__init__.py
/agent.py

/pyproject.toml

/pyproject.toml

Neo4j-semantic-layer
template is a package
and agent.py has our
LCEL chain defined

Add LCEL chain methods as
endpoints in web service

https://github.com/langchain-ai/neo4j-semantic-layer

App structure

Agent chain

.invoke

.batch

.stream

LangServe app

add_routes in server.py creates HTTP
endpoints that expose the methods of

the LCEL chain via the web server!

/invoke

/batch

/stream

server.py

from neo4j_semantic_layer import agent_executor as neo4j_semantic_agent

add_routes(app, neo4j_semantic_agent, path="/neo4j-semantic-layer")

$ poetry install
$ langchain serve

Run the server locally

Use hosted LangServe

https://github.com/langchain-ai/neo4j-semantic-layer

https://github.com/langchain-ai/neo4j-semantic-layer

Appendix

LCEL enables composition of chains

https://python.langchain.com/docs/expression_language/interface

LCEL objects have a runnable interface w/ common invocation methods

https://python.langchain.com/docs/expression_language/interface

https://python.langchain.com/docs/expression_language/cookbook/

Many use-cases can be expressed using LCEL objects

https://python.langchain.com/docs/expression_language/cookbook/

Challenges w/ production

Prototyping Production

Async Support Often synchronous (e.g., Jupyter)

Often Required

Streaming

Often optional

Parallel execution

Retries / fallback

Access intermediate results

I / O validation

Ease of deployment

Observability

https://python.langchain.com/docs/expression_language/

https://python.langchain.com/docs/expression_language/

LCEL enables same code for prototyping + production!

https://python.langchain.com/docs/expression_language/

Prototyping Production

Async Support

Every LCEL object supports these!
Streaming

Parallel execution

Retries / fallback

Access intermediate results

I / O validation

Ease of deployment

Observability

https://python.langchain.com/docs/expression_language/

LangServe addresses I/O validation and deployment

https://python.langchain.com/docs/expression_language/

Prototyping Production

Async Support

LCEL
Streaming

Parallel execution

Retries / fallback

Access intermediate results

LCEL + LangServeI / O validation

Ease of deployment

Observability

https://python.langchain.com/docs/expression_language/

Interact with the app in various ways

https://github.com/langchain-ai/langserve

LangServe app: FastAPI

/invoke

/batch

/stream

SDK, requests , curl, Playground

https://github.com/langchain-ai/langserve

Challenges w/ production

https://docs.smith.langchain.com/

Prototyping Production

Async Support

LCEL
Streaming

Parallel execution

Retries / fallback

Access intermediate results

LCEL + LangServeI / O validation

Ease of deployment

Observability LCEL + LangServe + LangSmith

https://docs.smith.langchain.com/

Use hosted LangServe for a managed server

Both expose the agent methods and playground!

Playground

https://neo4j-semantic-layer-app-4c0c4aebed1a520e885a28ab-ffoprvkqsa-uc.a.run.app/neo4j-semantic-layer/playground/

It also integrates with LangSmith

Trace

https://smith.langchain.com/public/47b3e5dd-c6d8-434a-a5d6-b3bfdd9c4247/r

