LLaMA-Mesh:
Unifying 3D Mesh Generation with Language Models
Zhengyi Wang*, Jonathan Lorraine*, Yikai Wang,
Hang Su, Jun Zhu, Sanja Fidler*, Xiaohui Zeng*
*NVIDIA
12/14/2024
NVIDIA Confidential
All assets shown are available on our project webpage:
https://research.nvidia.com/labs/toronto-ai/LLaMA-Mesh/
1-min Overview
Our Text Representation of Meshes - OBJ Files
Mesh Generation Ability without Finetuning
Our Finetuning Strategy
Finetuning Details: Dataset Mixtures
Finetuning Details: Quantization for Context Length
Results: Sampled Dialogues
Results: Comparison to Mesh-Generation Methods
Results: Sample Diversity Per-Prompt
Inference Code and Model Checkpoint Available: https://github.com/nv-tlabs/LLaMa-Mesh,
https://huggingface.co/Zhengyi/LLaMA-Mesh
Blender Addon powered by LLaMA-Mesh: https://github.com/huggingface/meshgen
Interactive Demo on Hugging Face: https://huggingface.co/spaces/Zhengyi/LLaMA-Mesh
Limitations
Future
Jonathan Lorraine
Zhengyi Wang
Xiaohui Zeng
Sanja Fidler
Jun Zhu
Hang Su
Yikai Wang
Project Website: research.nvidia.com/labs/toronto-ai/LLaMA-Mesh/
More Info
Project Webpage: https://research.nvidia.com/labs/toronto-ai/LLaMA-Mesh/
Online Demo: https://huggingface.co/spaces/Zhengyi/LLaMA-Mesh
Paper: https://arxiv.org/abs/2411.09595
Code: https://github.com/nv-tlabs/LLaMa-Mesh
Model Weights: https://huggingface.co/Zhengyi/LLaMA-Mesh
Blender Addon (courtesy of Dylan Ebert): https://github.com/huggingface/meshgen
Contact: xzeng@nvidia.com, jlorraine@nvidia.com, wang-zy21@mails.tsinghua.edu.cn
Slack: #fdl-llama-mesh
Questions
Spare Slides
Training Details
Results Gallery