Give the order in which Kruskal’s algorithm selects edges.

After considering the edge with weight 2, circle the connected components above.

Kruskal’s algorithm

DisjointSets<V> trees = new DSImpl<V>(graph.vertices());

List<Edge<V>> edges = graph.edges();
edges.sort(Double.comparingDouble(Edge: :weight));

List<Edge<V>> result = new ArrayList<();

int 1 = 0;

while (result.size() < graph.vertices().size() - 1) {
Edge<V> e = edges.get(i);

if (!'trees.find(e.from).equals(trees.find(e.t0))) {
trees.union(e.from, e.to);
result.add(e);

1 +=1;

}

return result;

Kruskal’s Code

Kruskal's algorithm relies on two disjoint set operations: find, which returns the
set representative (e.g. smallest value in set), and union, which combines two sets.

If we know that Kruskal's algorithm is in ©(|E| log |E|) time overall, fill in the blanks
with big-O bounds for the calls to find and union.

1. Merge sort the list of edges in the graph. O(|E| log |E])
2. While the size of the MST < |V] - 1...
a. Checkif find(e.from).equals(find(e.to)).

b. Iffalse, union(e.from, e.to) and add e to result.

What is the runtime if we use a List<Set<Node>> to implement find and union?

1. Merge sort the list of edges in the graph. O(|E| log |E|)
2. While the size of the MST < |V] - 1...
a. Checkif find(e.from).equals(find(e.to)).

b. |Iffalse, union(e.from, e.to) and add e to result.

Find and Union

Prim's algorithm is in ©(|E| log |V|) time overall. To get Kruskal's to match this, we
need an approach that has O(log |V|) time for both find and union.

Quick Find. Optimizes for the find operation.

Quick Union. Optimizes for the union operation, but doesn't really succeed.

Weighted Quick Union. Addresses the worst-case height problem in quick union.

Comparing runtimes

Let's speed up Kruskal's algorithm! If our edge weights are restricted to int values
bounded between 0 and 255, fill in the blanks with your best possible runtimes.

1. sort the list of edges in the graph.
2. While the size of the MST < |V]| - 1...
a. Checkif find(e.from).equals(find(e.to)).

b. Iffalse, union(e.from, e.to) and add e to result.

What is the runtime if we have a faster disjoint sets implementation, weighted
quick union with path compression, where find and union are in ©(a|V|)?

1. sort the list of edges in the graph.
2. While the size of the MST < |V] - 1...
a. Checkif find(e.from).equals(find(e.to)).

b. Iffalse, union(e.from, e.to) and add e to result.

Bottleneck analysis

Path compression reassigns the parent of each node visited by find to the root. 6

0
1 2 3 4
5 6 7 8 9 10
11 12 13 14
15

Path compression

Analogous to balancing a search tree by rotations or color flips. ©(«(N)) amortized.

